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ABSTRACT: Drug combinations may reduce toxicity and increase therapeutic efficacy,
offering a promising strategy to conquer multiple complex diseases. However, due to
large-scale combinatorial space, it remains challenging to identify effective combinations.
Although many computational methods have focused on predicting drug synergy to
reduce combinatorial space, they fail to effectively consider multiple sources of important
knowledge. Thus, it is necessary to propose a computational method that can exploit
useful information to predict drug synergy. Here, we developed a computational method
to predict drug synergy based on graph co-regularization, named DSGCR. By
incorporating drug−target network patterns, pharmacological patterns, and prior
knowledge of drug combinations, DSGCR performs predictions of synergistic drug
combinations. Compared to several existing methods, DSGCR achieves superior
performance in predicting drug synergy in terms of various metrics via cross-validation.
Additionally, we analyzed the importance of various sources of drug knowledge
concerning three DSGCR’s scenarios. Finally, the potential of DSGCR to score drug synergy was confirmed by three predicted
synergistic drug combinations.

■ INTRODUCTION
Two or more drugs that are simultaneously or sequentially
administered to patients is normally referred to as combined
drug therapy for treatment regimens. Adopting combination
therapy is an available and favorable way to conquer
complicated diseases, such as cancer1 and acquired immune
deficiency syndrome (AIDS),2 which can effectively improve
outcomes by escalating the effect and reducing off-target
toxicity by minimizing doses.3−5 Particularly, the efficacious
single-agent doses are significantly higher than the drug
concentrations used in the combination of ruxolitinib and
BEZ235 by the Bartalucci group. Thus, the toxicity affecting
normal hematopoiesis can be reduced by dose reduction.6

Classically, there are three types of relationships between drug
pairs: an additive relationship, which indicates that the sum of
the effects of each drug separately is equal to the combined
effect of the drug pair; synergistic relationship, which indicates
that the sum of the effects of each drug separately is less than
the combined effect of the drug pair; and the antagonistic
relationship, which indicates that the sum of the effects of each
drug separately is greater than the combined effect of the drug
pair.4,7

Over the past few years, some researchers have developed
several platforms for high-throughput experimentation to
systematically and rapidly classify antagonistic, additive, and
synergistic relationships between drug pairs.8−10 These plat-
forms and the traditional experiments were combined to
produce precision data to effectively screen synergistic drug
combinations, contributing to the exploration of the potential

mechanism of drug synergy and discovery of synergistic agents.
The known synergistic drug combinations were collected to
create the Drug Combination Database (DCDB), which
facilitates the summarization of patterns of drug synergy and
provides a basis to identify such synergistic drug combinations
by computational methods.11

However, effective drug combinations are difficult to
evaluate by biological experiments because of the extremely
large combination space. Thus far, more than 200 cancer drugs
have been approved by the Food and Drug Administration
(FDA), generating at least 19 900 combinations by combining
two drugs.12 The number of combinations to be tested will be
in the millions because thousands of chemical compounds are
used in clinical trials. Thus, the number of potential
combinations will increase exponentially while combining
three or more drugs. Hence, we need to use in silico methods
to reduce the screening space. Based on whether the model
depends on prior knowledge, these existing computational
models are mainly divided into two categories: (1) a priori
knowledge-free and (2) a priori knowledge-dependent. A priori
knowledge-free category can execute enrichment scores based
on gene expression profile to predict drug synergy, which
makes a significant contribution to screen synergistic drug
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combinations without known drug combinations.13,14 It should
be noted that Yang et al.15 evaluated the synergistic score of
drug pairs by integrating the gene expression changes after
drug treatment and analysis of drug response curves, which
significantly improves prediction accuracy by considering a
specific order of treatment. However, as mentioned before, the
a priori knowledge is overlooked. Due to novel drug
combinations being screened based on the feature patterns
enriched in the known synergistic drug combinations, a priori
knowledge-dependent model which utilizes a known syner-
gistic drug combination is proposed in refs 16−22. Thereinto,
some computational methods18,19 first extracted the feature
vector of the known synergistic drug combinations and then
utilized traditional machine learning to predict drug combina-
tions. Moreover, some computational methods20−22 directly
scored drug combinations based on the network, rather than
extracting feature vectors from the network. The most
important problem in network-based method is how to
construct a reliable network by using data from various
sources and develop a network-based learning method for
predicting drug synergy. Heterogeneous information network
is a useful tool to automatically incorporate multiple-source
information for a given task, which leads to a gain in
performance.21,22 Chen et al.21 incorporated drug structure
similarity, drug biological similarity, and the known drug

combinations to build a heterogeneous information network
and combined the least-squares term and graph regularization
term to construct an objective function in different subnet-
works. Various scores in different subnetworks were combined
to finally predict the synergistic drug combination. Further-
more, to effectively incorporate biological, chemical, pharma-
cological, and network knowledge to score drug synergy, Ding
et al.22 proposed a method to combine synergy scores from the
feature-based and network-based models with a novel
ensemble prediction framework, named EPSDC. However,
selecting negative samples from neutral samples would affect
the prediction results of EPSDC. Hence, for the existing
methods, it is difficult to effectively screen synergistic drug
combinations by integrating various types of information that
contributes to distinguishing synergistic drug combinations
from drug pairs.
In general, the drug−target network pattern and pharmaco-

logical pattern are the important sources to investigate drug
synergy, which has been validated by many studies.23 Thus, we
propose a computational method to predict drug synergy
based on graph co-regularization, termed DSGCR, which could
effectively incorporate drug pharmacological data and the
drug−target network. In DSGCR, the Jaccard coefficient was
employed to measure drug anatomical therapeutic similarity
based on the Anatomical Therapeutic Chemical coding system.

Figure 1. DSGCR workflow to predict drug synergy based on graph co-regularization. (A) The anatomical therapeutic similarity of drug pairs is
calculated based on the ATC code. (B) The protein network topology similarity is calculated by using SimRankLN. (C) The biological similarity of
drug pairs is calculated by integrating drug−target protein interactions and network protein topology similarity based on the BMA algorithm. (D)
The drug pairs are prioritized by incorporating multisource knowledge based on graph co-regularization.
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Moreover, motivated by SimRank,24 we developed a novel
measurement, SimRankLN, to calculate the protein network
topology similarity based on the protein−protein interactions
network, and then calculated the drug biological similarity with
the best match average (BMA)25 method based on the protein
similarity and drug−target protein interactions. Finally, we
respectively defined the graph regularization term on the drug
anatomical therapeutic similarity network, the drug biological
similarity network, and known drug combination network and
then collectively considered various graph regularization terms
to develop a novel objective function for predicting drug
synergy. In the experiment, we applied the proposed method
to the Drug Combinations Database (DCDB, version 2.0).11

The comparison between DSGCR and the existing methods of
predicting drug synergy was conducted in the fivefold cross-
validation and leave-one-out cross-validation. Additionally, the
importance of various drug similarities that imply the
pharmacological and drug−target network patterns was
analyzed. Finally, we presented the top-ranked synergistic
drug combinations screened by DSGCR to illustrate the ability
to predict drug synergy.

■ MATERIALS AND METHODS
In this research, we integrated various graph regularization
terms, including graph regularizer for drug−target network,
graph regularizer for pharmacological information, and graph
regularizer for the known synergistic drug combinations, to
construct an objective function to predict drug synergy. The
schematic representation of DSGCR is provided in Figure 1. In
DSGCR, we first utilized the Jaccard coefficient to calculate the
anatomical therapeutic similarities of drug pairs based on the
ATC coding system. Furthermore, a novel computational
method named SimRankLN was proposed to measure protein
network topology similarity based on the protein−protein
interactions network. Next, we calculated the biological
similarity of drug pairs with the BMA algorithm25 by
integrating drug target proteins and protein network topology
similarities calculated by SimRankLN. Finally, drug synergy was
learned based on an objective function integrating multiple
graph regularization terms defined on the known synergistic
drug combinations, pharmacological knowledge, and drug−
target network knowledge. Table 1 provides and summarizes
the notations defined in DSGCR. A binary matrix Ŷ with 1 for
entries of known association and 0 otherwise denotes the
synergistic drug combinations network, and a score matrix Y
denotes the synergy score of drug pairs calculated by DSGCR.
Collecting Gold Standard Drug Combinations. The

known synergistic drug combinations are collected and
organized to facilitate conducting in-depth analyses of
summarizing patterns of coordinated drug actions, which is
beneficial to predict drug synergy with a computational
model.5 In this study, we downloaded synergistic drug
combinations supported by experiments from the Drug
Combination Database, DCDB 2.0 (http://www.cls.zju.edu.
cn/dcdb/).11 These drug combinations are collected from
PubMed and the US FDA OrangeBook.26 In total, the current
version of DCDB includes 904 individual drugs and 1363
approved or investigational drug combinations.
Anatomical Therapeutic Similarity Analysis. Previous

studies have shown that individual agents in combinations tend
to belong to the same anatomical and therapeutic category in
the ATC system.23 The first three levels in the ATC codes
denote the main anatomical group, main therapeutic group,

and therapeutic/pharmacological subgroup. Hence, we calcu-
lated the anatomical therapeutic similarity of drug pairs based
on the first three levels of the ATC code,27 which is commonly
used to facilitate the prediction of new drug combinations.28 In
this study, the ATC codes of single drugs were collected from
the DrugBank Database (www.drugbank.ca).29 Assuming that
ATCk(d1) and ATCk(d2) represent the ATC code at the k-th
level of drugs d1 and d2, respectively, the drug ATC similarity
Sk(d1,d2) at the k-th level between drugs d1 and d2 can be
computed based on the Jaccard coefficient as follows

=
| ∩ |
| ∪ |

=S d d
ATC d ATC d
ATC d ATC d

k( , )
( ) ( )
( ) ( )

, 1, 2, 3k
k k

k k
1 2

1 2

1 2 (1)

where |.| represents the number of codes. The average value of
ATC similarities at the first three levels is then used to define
the anatomical therapeutic similarity. Thus, the anatomical
therapeutic similarity between drugs d1 and d2 can be defined
as follows

=
∑ −d d

S d d
S ( , )

( , )

3
k katc

1 2
1

3
1 2

(2)

It is important to note that multiple ATC codes can be used to
represent a drug. For example, three different ATC codes:
D03BA02, M09AB02, and D03BA52, denote collagenase
clostridium histolyticum, and three different ATC codes:
D04AA01, R06AC06, and R01AC06, denote thonzylamine.
The drug ATC similarity between collagenase clostridium
histolyticum and thonzylamine at the first level is then:

= |{ }|
|{ }|

=

S
D

D M R

(collagenase clostridium histolyticum, thonzylamine)

, ,
1
3

1

Protein Network Topology Similarity Analysis. The
Human Protein Reference Database (HPRD) provides the
experimentally validated protein−protein interaction network
in Homo sapiens and can be downloaded from http://www.
hprd.org/.30 Additionally, most target proteins of synergistic

Table 1. Notations

notation definition

n number of drugs

∈ ≥
*Scom n n
0

binary graph representing the known synergistic drug
combinations

∈ ≥
*Satc n n
0

graph representing the drug anatomical therapeutic
similarity

∈ ≥
*Sbio n n
0 graph representing the drug biological similarity

∈ ≥
*Scom n n
0

normalized drug combination network
S com = Dcom−1/2

ScomDcom−1/2

̅ ∈ ≥
*S atc n n
0

normalized drug anatomical therapeutic similarity
network

S atc = Datc−1/2SatcDatc−1/2

̅ ∈ ≥
*S bio n n
0

normalized drug biological similarity network
S bio = Dbio−1/2SbioDbio−1/2

Lcom = Dcom − Scom graph Laplacian matrix of Scom

Latc=Datc−Satc graph Laplacian matrix of Satc

Lbio = Dbio −Sbio graph Laplacian matrix of Sbio

Lcom = I − Scom normalized graph Laplacian matrix of Scom

Latc = I − Satc normalized graph Laplacian matrix of Satc

Lbio = I − Sbio normalized graph Laplacian matrix of Sbio

̂ ∈ ≥
*Y n n
0 known synergistic drug combinations for training

∈ ≥
*Y n n
0 potential drug combinations to learn
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agents can be connected by a path length of 2 to 4 through
analyzing the drug−target network.31 Thus, these proteins
connected by a 2-to-4 length path should achieve higher
topological similarity. Furthermore, the protein network
topology similarity can commonly contribute to the
reconstruction of protein−protein interaction networks,32

identification of protein complexes,33,34 etc. Motivated by
SimRank24 and HeteSim,35−37 we developed a new SimRank
for the specific length to measure protein network topology
similarity, named SimRankLN. Particularly, we first introduced
the SimRankL relatedness SimRankL(t1,t2|L) between protein t1
and protein t2 for the path of length L as follows

∑ ∑

|

=
| || |

* | −
=

| |

=

| |

SimRank t t L

N t N t
SimRank t t L

( , )

1
( ) ( )

( , 2)

L

i

N t

j

N t

L

1 2

1 2 1

( )

1

( )

1 2

1 2

(3)

where N(t1) and N(t2) are the neighbors of t1 and t2,
respectively, and |.| represents the number of nodes.
Considering that SimRankL does not have a self-maximum
property, i.e., s(ti, tj) ∈ [0,1], and s(ti, ti) = 1, which is a good
and important property of similarity measurement,38 the
SimRankL relatedness is normalized to be the SimRankLN
relatedness, making the relevance measure more reasonable.
Details of the SimRankLN are shown in the Supporting
Information. Finally, we define the protein network topology
similarity Spro(t1,t2) between proteins t1 and t2 by using the
average value of SimRankLN relatedness based on a 2-to-4 path
length

=
∑ |∈{ }S t t

SimRank t t L
( , )

( , )

3
pro L LN

1 2
2,3,4 1 2

(4)

Biological Similarity of Drug Pair Analysis. Considering
the assumption that proteins with high topological similarity
are associated with individual agents in drug combinations,23

the above protein network topology similarity and known drug
target protein are integrated to measure the biological
similarity of the drug pair. Thus, the high-quality physical
drug−target interactions used in this study are collected from
DrugBank.29 Defining the similarity between a protein and a
group of proteins is the first step to calculate the biological
similarity of drug pair. Given a protein t and a group of
proteins T = {t1,t2,...,tk}, the similarity between protein t and
protein group T is calculated as follows

=
≤ ≤

S t T S t t( , ) max ( ( , ))G

i k

pro
i

1 (5)

The process of calculating the biological similarity between
drug d1 and drug d2 is selected to clearly describe the
computational method for the biological similarity of the drug
pair. Assuming that Td1 denotes a group of proteins related to

drug d1 and Td2 denotes a group of proteins related to drug d2,
we herein introduce the biological similarity Sbio(d1,d2)
between drug d1 and drug d2 as follows

=
∑ + ∑

| | + | |
≤ ≤| | ≤ ≤| |

S d d

S t T S T t

T T

( , )

( , ) ( , )

bio

i T
G

d d j T
G

d d

d d

1 2

1 1 2 1 1 2

1 2

d i d j1 2

(6)

Moreover, the above-described method is called the BMA
(best match average) method, which is also used to calculate
the similarity of various biological entities.25,39,40

Graph Co-Regularization. Many studies have illustrated
that different types of relationships between various biological
entities could be successfully predicted with a computational
method that utilizes graph regularization as a base model.41−43

Thus, we first introduced the graph regularization in the
Supporting Information in detail. Moreover, to simultaneously
learn drug synergy from the drug−target network pattern and
pharmacological pattern, we introduced graph co-regulariza-
tion by effectively extending the graph regularization to predict
synergistic drug combinations.44 Assuming that the training
synergistic drug combination is Ŷ, the known drug
combination matrix is Scom, equaling Ŷ, the drug anatomical
therapeutic similarity matrix is Satc, and the drug biological
similarity matrix is Sbio, the graph co-regularization simulta-
neously preserves the geometric structure with respect to the
drug combinations network, drug anatomical therapeutic
similarity network, and drug biological similarity network by
the following objective function

i

k

jjjjjjj
y

{

zzzzzzz

∑

∑ ∑

λ

λ λ

=

+ +

=

= =

F Y Y Y S

Y Y S Y Y S

( )
1
2

( , )

( , ) ( , )

GC
com

i j

n

i j ij
com

atc

i j

n

i j ij
atc bio

i j

n

i j ij
bio

, 1

, 1 , 1

(7)

where λcom ∈ (0,1), λatc ∈ (0,1), and λbio ∈ (0,1) are three
regularization hyperparameters, implying the importance of the
drug combinations network, drug anatomical therapeutic
similarity network, and drug biological similarity network,
respectively. Thus, in the objective function, the cost terms
∑ = Y Y S( , )i j

n
i j ij

com
, 1 , ∑ = Y Y S( , )i j

n
i j ij

atc
, 1 , a n d

∑ = Y Y S( , )i j
n

i j ij
bio

, 1 are used to, respectively, apply synergistic

drug combination network information, drug anatomical
therapeutic similarity network information, and drug biological
similarity network information to predict novel drug
combinations. Similar to graph regularization, the loss function

can be the Euclidian distance. Thus, the objective function
of the prediction framework termed SDCLR (synergistic drug
combinations based on Laplacian regularization) can be
formulated as follows

∑ ∑

∑ ∑

λ λ

λ

= − +

− + − + − ̂

= =

= =

F Y S Y Y S Y

Y S Y Y Y Y

( )
2 2

2

GCE

com

i j

n

ij
com

i j

atc

i j

n

ij
atc

i

j

bio

i j

n

ij
bio

i j
i

n

i i

, 1

2

, 1
2

, 1

2

1

2

(8)

The details to obtain the analytical solution of the objective
function FGCE(Y) are described in the Supporting Information.
Moreover, a normalization technique in graph-based learning
was adopted to suppress hubs and has been validated by many
studies.45 Thus, to reduce the effect of drugs that have
similarity with many drugs, the prediction framework termed
DSGCR can be formulated as follows
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We then calculate the derivation of FGCL(Y) with respect to Y
to solve the above optimization problem as follows

λ λ λ
∂

∂
= ̅ + ̅ + ̅ + − ̂

=

Y
Y

YL YL YL Y Y
(F ( ))

0

GCL com com atc atc bio bio

(10)

Furthermore, the Supporting Information provides details
about analytically solving the objective function FGCL(Y). Thus,
the analytical solution of the objective function can be
obtained after some algebraic transformations and is displayed
as follows

λ λ λ= ̂* ̅ + ̅ + ̅ + −Y Y L L L I( )com com atc atc bio bio 1 (11)

where I is the identity matrix of size n * n. Moreover, the
Supporting Information provides a process, proving that the
matrix λ comL com + λ atcL atc + λ bioL bio + I is a positive definite
and invertible. Y represents the synergy scores of drug pairs.
Because the matrix Y may not be symmetric, we consider Yij +
Yji as the synergy score between the i-th drug and j-th drug.
Performance Evaluation Metrics. The performance of

predicting drug synergy was estimated using the precision,
recall, AUC (the area under the receiver operating character-
istic (ROC) curve),46 AUPR (the area under the precision
recall (PR) curve),47 and P-value calculated by paired t-test.48

The overall performance to predict drug synergy could be
estimated by AUC, driven by the true-positive rates (TPRs)
and the false-positive rates (FPRs) at different ranking cutoffs.
Therefore, TPR denotes the ratio of identified positive samples
accounting for all of the positive samples, while FPR denotes
the proportion of negative samples predicted incorrectly
among the total negative samples. Given the threshold set Θ
= {θ1,θ2,...,θm}, AUC can be calculated as follows

∫ θ θ= dAUC TPR( ) (FPR( ))i i
0

1

(12)

Because biologists tend to adopt wet-lab experiments to further
validate the top-rankings, there is a tremendous need to ensure
more positive samples in the top-ranked candidates. Mean-
while, compared to the ROC curve, the PR curve can heavily
punish negative samples with a high rank. Thus, we also
employed AUPR to estimate the performance to predict drug
synergy. The PR curve can be drawn with precisions and
recalls at different ranking cutoffs. Therefore, given true-
positive TP, true-negative TN, false-positive FP, and false-
negative FN, precisions and recalls can be defined as follows

θ
θ

θ θ
=

+
=i mprecision( )

TP( )
TP( ) FP( )

, 1, 2, ...i
i

i i (13)

θ
θ

θ θ
=

+
=i mrecall( )

TP( )
TP( ) FN( )

, 1, 2, ...i
i

i i (14)

Thus, AUPR can be calculated as follows

∫ θ θ= dAUPR precision( ) (recall( ))i i
0

1

(15)

Moreover, a statistical method, the paired t-test, is applied to
claim the differences between the paired observations. We can
suggest that the results of one method is significantly different
from that of another method, while the P-value is less than the
significance level (0.05). Furthermore, it should be noted that
P-values are two-sided in this study.48

Software Package. We have uploaded the R software
package through GitHub to https://github.com/KDDing/
DSGCR, containing all codes used to run all proposed
methods. Furthermore, the package can be used to execute
fivefold cross-validation and leave-one-out cross-validation, as
well as select hyperparameters for reproducing the results. The
readme file details how to run the program and interpret the
generated results.

■ EXPERIMENTS AND RESULTS

In the experiments, both the fivefold cross-validation and leave-
one-out cross-validation are applied to evaluate the perform-
ance in predicting drug synergy based on multisource drug
knowledge. Additionally, the effect of normalization is
estimated by comparing DSGCR with SDCLR. Moreover,
we demonstrate how the drug−target network pattern and
pharmacological pattern can benefit the predictions by
analyzing the impact of two types of drug similarity. Finally,
we demonstrate the ability of DSGCR to score drug synergy by
showing several examples.

Data Preparation. The known synergistic drug combina-
tions were downloaded from the Drug Combination Database
(DCDB 2.0, http://www.cls.zju.edu.cn/dcdb/)11 that stores
information on drug combinations for facilitating systems-
oriented new drug discovery. We downloaded the human
protein−protein interactions network from the Human Protein
Reference Database (HPRD, http://www.hprd.org/)30 that
collects and organizes proteomic information pertaining to
human proteins. The ATC code of the drug and drug−protein
interactions were collected from DrugBank 5.0 (www.
drugbank.ca)29 that is a database of comprehensive molecular
information about drugs, their mechanisms, interactions, and
targets. In the experiments, the same preprocessing method as
in ref 22 was employed to eliminate single drugs for a fair
comparison. In fact, single drugs in study could be represented
as SDst ∩ SDATC, where SDst denotes the set of single drugs
with chemical structure information and SDATC denotes the set
of single drugs with ATC code information in DCDB dataset.
After eliminating single drugs, there remain 139 single drugs
with both chemical structure information and ATC code
information. However, a recent study reported that chemical
structure information cannot be applied to distinguish
synergistic drug combinations from random drug pairs.16

Thus, DSGCR scores drug synergy without considering the
chemical structure. After eliminating protein without related
drug, 173 approval pairwise synergistic drug combinations and
449 drug−target interactions between 139 single drugs and
218 target proteins were identified in the benchmark dataset.
The drug−target network and protein−protein interaction
network based on the benchmark database are provided in
Figures S2 and S3, respectively. The benchmark dataset is
available through GitHub at https://github.com/KDDing/
DSGCR.
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Comparison with Other Methods. In this paper, fivefold
cross-validation (FFCV) experiments were conducted to
identify optimal hyperparameters. The grid search method
was used to determine all parameter combinations. We
determined the optimal combination for λcom, λatc, and λbio

from the set {0.01,0.1,0.3,0.5,0.7,0.9}. Subsequently, we set
λcom = 0.3, λatc = 0.1, and λbio = 0.01. To ensure a fair
comparison, we set the parameters to their default values based
on the authors’ recommendations (ηA = 0.3, ηP = 0.3 for
NLLSS, and maximum length = 4 for EPSDC).
To systematically estimate the prediction ability of DSGCR

on the benchmark dataset, DSGCR was compared to other
computational methods (such as NLLSS,21 EPSDC,22 and
SDCLR.) via fivefold cross-validation (FFCV) and leave-one-
out cross-validation (LOOCV) experiments. Specifically, in
NLLSS,21 a heterogeneous information network was first
constructed by combining the known drug combinations and
drug similarity; then, the Laplacian regularized least-squares
algorithm was applied to the constructed network to predict
drug synergy. Moreover, for a fair comparison, the chemical
similarity is replaced with the anatomical therapeutic similarity
in NLLSS to ensure that all of the methods perform
predictions on the same dataset. Moreover, the performance
of NLLSS may be improved by replacing the anatomical
therapeutic similarity because drug structural features cannot

distinguish synergistic combinations from random ones in the
context of cancer therapy, a finding that has been reported
previously.31 However, most of the individual agents in
synergistic drug combinations belong to the same anatomical
and therapeutic group reported in recent studies.16 In EPSDC,
the natural properties and drug-related relationships were
integrated with ensemble rules to identify synergistic drug
combinations. Compared to DSGCR, SDCLR makes pre-
dictions without normalization. In each run of FFCV, we
equally divide all of the known pairwise drug combinations
into five parts. Each part is selected as the positive samples in
the testing set in order, and the remaining four parts are used
as the positive samples in the training set. In LOOCV, each
known drug combination is selected as a positive sample in the
testing set in turn, and the remaining combinations are utilized
as the positive samples in the training set.
To estimate the performance of DSGCR, we conducted a

comparison between DSGCR and two existing methods,
NLLSS and EPSDC, to predict drug synergy, and we also used
a graph co-regularization-based method without normalization,
SDCLR. To evaluate the performance of the learning methods
with probability estimations, AUC and AUPR are the
outstanding metrics.49,50 Thus, we evaluated the prediction
performance of DSGCR and other methods with AUC and
AUPR. We performed 10 runs of FFCV to plot ROC curves

Figure 2. Performance of different methods to predict drug synergy with fivefold cross-validation. (A) ROC curves of various methods with fivefold
cross-validation. (B) PR curves of various methods with fivefold cross-validation.

Figure 3. Evaluation of different methods to predict drug synergy at top-k rankings. (A) Average precision values of various methods with fivefold
cross-validation. (B) Average recall values of various methods with fivefold cross-validation.
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and PR curves and obtain the corresponding AUCs and
AUPRs of different methods (Figure 2). As shown in Figure
2A, DSGCR obtained the highest AUC of 86.53%. DSGCR
outperforms NLLSS by 4.47%, EPSDC by 4.26%, and SDCLR
by 6.7%. The AUCs of DSGCR and other methods with
different runs were compared using paired t-test via fivefold
cross-validation. P-values (P-value = 1.85E − 12 comparing
DSGCR with NLLSS, P-value = 1.55E − 09 comparing
DSGCR with EPSDC, and P-value = 0.72E − 11 comparing
SDCLR with DSGCR) were less than 0.05, suggesting that the
differences between AUCs were statistically significant. As
shown in Figure 2B, the highest AUPR of 7.75% was produced
by DSGCR. Its AUPR was 1.89, 4.74, and 0.2% better than
those of NLLSS, EPSDC, and SDCLR, respectively.
Furthermore, DSGCR yields a better performance than
SDCLR, illustrating the effectiveness of normalization.
Similarly, the AUPRs of DSGCR and other methods with
different runs via fivefold cross-validation were compared using
paired t-test. P-values (P-value = 0.2E − 03 comparing
DSGCR with NLLSS, P-value = 5.8E − 09 comparing DSGCR
with EPSDC, and P-value = 0.21E − 03 comparing SDCLR
with DSGCR) were less than 0.05, suggesting that the
differences between AUPRs were statistically significant.
The precision within the top-k ranking list implies the

reliability of potential synergistic drug combinations. As shown
in Figure 3A, the overall DSGCR outperformed the other
methods from the top 30 to top 300 in terms of precision. The

exact precision values of various methods are shown in Table
S1. Furthermore, we applied the paired t-test based on
different top-rankings to show that DSGCR achieved
significant performance in terms of precision compared to
NLLSS and EPSDC (P-value = 0.42E − 03 comparing
DSGCR with NLLSS, P-value = 0.15E − 01 comparing
DSGCR with EPSDC, and P-value = 0.17E − 01 comparing
SDCLR with DSGCR). The higher the recall on the top-k
rankings is, the more positive samples in the test set are
successfully identified. As shown in Figure 3B, the overall
DSGCR performed better than the other methods from the
top 50 to top 500 in terms of recall. The exact recall values of
various methods are also shown in Table S1. Moreover, paired
t-tests based on different top-rankings reported that the
performance of DSGCR was significantly better than the
prediction results of other methods in terms of the obtained
recalls (P-value = 5.42E − 02 comparing DSGCR with NLLSS,
P-value = 3.31E − 05 comparing DSGCR with EPSDC, and P-
value = 0.19E − 02 comparing SDCLR with DSGCR).
Generally, DSGCR is always the best method in terms of
precision and recall.
Additionally, we implemented leave-one-out cross-validation

(LOOCV) to estimate the performance of various methods
because the training set in LOOCV is more similar to the real
data. Because the positive/negative sample rate (1/9419) in
the testing set is extremely low in LOOCV, the AUC and recall
are considered as metrics, ignoring AUPR and precision. As

Figure 4. Performance of different methods in predicting drug synergy with leave-one-out cross-validation. (A) ROC curves of various methods
with leave-one-out cross-validation. (B) Average recall values of various methods with leave-one-out cross-validation.

Figure 5. (A) ROC curves of DSGCR trained with both or either one of two similarities via FFCV. (B) ROC curves of DSGCR trained with both
or either one of two similarities via LOOCV. (C) Average recall values of DSGCR trained with both or either one of two similarities via LOOCV.
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shown in Figure 4A, NLLSS, EPSDC, SDCLR, and DSGCR
achieved AUCs of 80.43, 84.28, 81.22, and 87.47%,
respectively. DSGCR performed better than NLLSS by
7.04%, EPSDC by 3.19%, and SDCLR by 6.25% in terms of
the AUC. At the top 50, the average recalls of NLLSS, EPSDC,
SDCLR, and DSGCR were 17.92, 12.72, 20.81, and 29.48%,
respectively. At the top 400, these four methods achieved
average recall values of 42.77, 48.55, 48.55, and 55.5%,
respectively. Additionally, we implemented paired t-test to
assess the statistical significance. Table S1 lists P-values for the
leave-one-out cross-validation, which further reported that
DSGCR obtained better performance in terms of the AUC and
recall at the significance level of 0.05. Generally, DSGCR is
always the best method in terms of recall via LOOCV from the
top 50 to top 400.
Importance of Various Drug Similarities. In the

experiments, we constructed three DSGCR scenarios,
DSGCR_bio_sim, DSGCR_atc_sim, and DSCGR, to evaluate
the importance of drug anatomical therapeutic similarity and
drug biological similarity. DSGCR_bio_sim is trained without
drug anatomical therapeutic similarity; DSGCR_atc_sim is
trained without drug biological similarity; and DSGCR is
trained with both drug anatomical therapeutic similarity and
drug biological similarity. As shown in Figure 5, DSGCR with
both similarities performed better than DSGCR_bio_sim and
DSGCR_atc_sim via FFCV and LOOCV. DSGCR exceeded
DSGCR_bio_sim with an AUC of 12.92% and DSGCR_cli_-
sim with an AUC of 0.33% (Figure 5A). Additionally, as shown
in Figure 5B, the average AUCs of DSGCR_bio_sim,
DSGCR_cli_sim, and DSGCR were 76.22, 87.11, and
87.47% via LOOCV, respectively. DSGCR’s AUC was 11.25
and 0.36% higher than those of DSGCR_bio_sim and
DSGCR_cli_sim, respectively. Figure 5C provides the average
recalls of three DSGCR scenarios from top 100 to top 1000 via
LOOCV. Additionally, for AUCs with different runs in fivefold
cross-validation, as well as AUCs and recalls with different
ranks in leave-one-out cross-validation, paired t-tests were also
carried out to measure the statistical significance. The P-values
are provided in Table S2, which claimed that DSGCR
combining two similarities achieved higher AUCs and recalls
at the significance level of 0.05. Therefore, we could say that
incorporating the drug anatomical therapeutic similarity could
greatly improve the prediction performance in terms of AUC
and recall, and DSGCR_bio_sim could improve the prediction
of drug synergy to a certain extent in this study.
Predicted Synergistic Drug Combinations. After

estimating the prediction performance of DSGCR by cross-
validation, we further illustrated DSGCR’s ability to predict
drug synergy based on the novel synergistic drug combinations
predicted by DSGCR. The prediction model of DSGCR was
trained on all of the known synergistic drug combinations.
Next, we obtained the potential candidate combinations with
DSGCR, and the top three drug combinations prioritized by
DSGCR are listed in Table 2. Thus, the drug targets described
in Table 2 were obtained from DrugBank. These inferred
synergistic drug combinations were searched in PubMed to
obtain related information from the literature. Bryant et al.51

reported that both gemcitabine and 5-fluorouracil can be used
to manage pancreatic ductal adenocarcinoma by indirectly
blocking replicative forks. Gutierrez-Delgado et al.52 reported
that the oxaliplatin and cyclophosphamide combination is well
tolerated and has an efficacy comparable to other neoadjuvant
chemotherapy regimens. Ketter et al.53 suggested that

carbamazepine and valproic acid used together may have
synergistic anticonvulsant effects. Moreover, we have provided
the full rankings of potential synergistic drug combinations that
are available in https://github.com/KDDing/DSGCR.

■ CONCLUSIONS
More durable clinical responses may be caused by synergistic
drug combinations, which can overcome drug resistance to
monotherapies. However, due to the large-scale combinatorial
space,54 it remains a challenge to identify drug synergy.
According to various mechanism of action patterns potentially
related to drug synergy, the potential synergistic drug
combinations could be quickly screened based on machine
learning. Therefore, we have proposed a novel graph co-
regularization-based method to predict drug synergy, named
DSGCR. This method requires the known synergistic drug
combinations, pharmacological pattern and drug−target net-
work pattern. Specifically, the proposed protein network
topology similarity measurement SimRankLN considered the
characteristic of synergistic agents that can meet by the 2-to-4
length path in the protein−protein interaction network. In the
experiments, for predicting drug synergy, DSGCR out-
performed other methods by a wide margin in cross-validation.
Additionally, we investigated the importance of various
mechanisms of action patterns potentially related to drug
synergy. Finally, the predicted synergistic drug combinations
further illustrated the powerful ability to identify synergistic
drug combinations from the neutral samples. Overall, our
findings suggest that DSGCR can be a useful tool to score drug
synergy. However, this computational model cannot explore
the dose of synergistic drug agents. Furthermore, the synergy
score matrix may not be symmetric, that is, DSGCR generates
a nonintuitive result. Hence, the future work needs to ensure
that the synergistic score matrix is symmetric to generate
intuitive synergy scores in future work. Moreover, although
DSGCR can predict drug synergy by incorporating multisource
information, the performance improvement obtained by
combining the biological knowledge of drug is limited. The
major reason may be that the proposed method depends on
the assumption that synergistic effects from drugs act on the
similar pathways, but many synergistic effects are from drugs
with different modes of action. Additionally, the cause may be
that drug−target interactions at the genetic level, rather than at
the binding site level, are used in the study. Hence, it is urgent
to design various in silico methods to consider the diversity of
mechanisms of synergism in promoting complementary

Table 2. Top Three Novel Combinations Inferred by
DSGCR

rank drug name
DrugBank

ID ATC code targets

1 Gemcitabine DB00441 L01BC05 DNA; PRM1;
TYMS; CMPK1

Fluorouracil DB00544 L01BC52;
L01BC02

DNA; RNA; TYMS

2 Oxaliplatin DB00526 L01XA03 DNA

Cyclophosphamide DB00531 L01AA01 DNA; NR1I2

3 Carbamazepine DB00564 N03AF01 SCN5A; CHRNA4;
CHRNB2; NR1I2

Valproic acid DB00313 N03AG01 ACADSB; HDAC9;
OGDH;
ALDH5A1;
HDAC2; PPARA;
PPARD; PPARG
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actions7 to predict synergistic drug combinations. Moreover,
although historical validation was carried out in the experi-
ment, we would like to try wet-lab experiment for validating
top-rank drug pair that is not validated yet in the future work.
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