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ABSTRACT: The emergence of a large amount of pharmaco-
logical, genomic, and network knowledge data provides new
challenges and opportunities for drug discovery and development.
Identification of real small-molecule drug (SM)−miRNA associa-
tions is not only important in the development of effective drug
repositioning but also crucial in providing a better understanding of
the mechanisms by which small-molecule drugs achieve the purpose
of treating diseases by regulating miRNA expression. However,
challenges remain in accurately determining potential associations
between small molecules and miRNAs using information from
multiomics data. In this study, we adopted a novel framework called
SMAJL to improve the prediction of small molecule−miRNA associations with joint learning. First, we use enhancing matrix
completions to obtain the network knowledge of small molecule−miRNA associations. Then, we extract the information of small-
molecule fingerprints and miRNA sequences into feature vectors to obtain small-molecule structure and miRNA sequence
information. Finally, we incorporate small-molecule structure information, miRNA sequence data, and heterogeneous network
knowledge into a joint learning model based on a Restricted Boltzmann Machine (RBM) to predict association scores. To validate
the effectiveness of our method, the SMAJL model is compared with four state-of-the-art methods in terms of 5-fold cross-validation.
The results demonstrate that the AUC and AUPRC of the SMAJL are obviously superior to those of other comparison methods.
The SMAJL model also achieved great results in terms of robustness and case studies, further demonstrating its strong predictive
power.

1. INTRODUCTION

The efforts of characterizing and predicting drug−target
associations have been inspired by drug polypharmacology.1

Where available, the targeted drugs may continue to inform
clinical trials, drug discovery, and efforts to overcome drug
resistance through deeply understanding the mechanistic
action. Thus, it is important to guide future drug innovation
and development by maintaining an up-to-date and accurate
map of FDA-approved drugs and their efficacy targets.2

Previous studies have shown that the precursors and mature
miRNAs could be targeted by small molecular drugs
(abbreviation small molecule or SM);3−5 the secondary
structures of miRNA, which mainly include stem loops and
bulges, are targets to which small molecules can be applied.6

More critically, cumulative studies have identified that many
diseases are associated with abnormal expression of miR-
NAs.7−9 Therefore, it is feasible to discover miRNAs that
exhibit specific associations with small molecules for disease
therapeutic purposes.10

In the past decade, wet lab experiments have been used to
verify associations between small molecules and miRNAs.
However, these methods are time consuming, costly, and

laborious.11 Thus, computational means are needed to
complement wet lab experiments. Although wet lab experi-
ments still remain the gold standard, one can broaden the
research scope of wet lab experiments using computational
techniques.12−14 Computational prediction of small molecule−
miRNA associations has become a critical step in drug
discovery or repositioning, aiming to identify potential novel
small molecular drugs or new miRNAs for existing small
molecular drugs. Computational methods can efficiently
discover potential small-molecule-associated miRNA candi-
dates to guide experimental validation and thus significantly
reduce the cost and time required for drug repositioning or
discovery.15

Recently, many computational approaches have been
developed to reveal novel or potential small-molecule-
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associated miRNAs. One major category of computational
methods is feature extraction-based approaches for calculating
the association score between small molecules and miRNAs. A
key assumption of these methods is that similar small
molecules may share similar miRNAs and vice versa. Based
on this assumption, the computational process of small
molecule−miRNA association prediction can be formulated
as a binary classification task, which aims to verify whether an
association between a small molecule and miRNA is present.
For example, Jamal et al.16 used Naiv̈e Bayes and Random
Forest to generate computational models of biological activity
of small molecules, providing the first comprehensive analysis
of the miRNA−small molecule modulator prediction model.
Xie et al.17 proposed a text mining method called EmDL,
which determined known associations between small molec-
ular drugs and miRNAs from the literature. This approach first
extracted features by calculating the distance between entities
on the sentences containing them. Then, a support vector
machine was used to calculate prediction scores. Finally, using
the EmDL method to obtain known small molecule−miRNA
associations, the author constructed a database named MTD.18

In addition to extracting features from the literature, extracting
features from the network is also a viable method. Wang et al.
developed a calculation framework named RFSMMA, which
was based on Random Forest to predict small molecule−
miRNA associations. The similarity between small molecules
and miRNAs was extracted as features to implement machine
learning.19

Graph mining approaches provide a multiview perspective
and diverse information for verifying potential small mole-
cule−miRNA associations. Several studies indicated that
graph-mining-based computational methods could achieve
good prediction performance. For instance, Jiang et al.
identified the biological interactions between small molecules
and miRNAs in 23 different cancers using a novel high-
throughput method and systematically analyzed the properties
of small molecule−miRNA associations by constructing the
association network for each cancer.10 Lv et al.20 performed
the Random Walk with Restart algorithm to predict the
associations between small molecules and miRNAs. MiRNAs
can be used as small molecular targets because small molecules
can affect miRNA expression. Based on this notion, Meng et
al.21 computed the similarity of the transcriptional response to
verify small molecule−miRNA associations by analyzing 39
miRNA-perturbed gene expression profiles. To increase
feasibility and provide high efficiency and accuracy for
comprehensively evaluating associations between small mole-
cules and miRNAs on a large scale, Li et al.22 proposed a
network-based miRNA pharmacogenomic framework. Qu et
al.23 proposed a HeteSim-based inference model for small
molecule−miRNA association prediction. Guan et al.24

presented a graphlet interaction-based inference method for
small molecule-associated miRNAs prediction. Wang et al.25

identified small molecule−miRNA associations based on cross-
layer dependency inference on multilayered networks. To fully
consider the various information from heterogeneous net-
works, Qu et al.26 developed a triple-layer heterogeneous
network-based model by integrating small molecule−miRNA
associations and miRNA−disease associations to uncover
potential small molecule−miRNA associations. Zhao et al.27

presented a framework called SNMFSMMA to predict
potential small molecule−microRNA association using sym-
metric non-negative matrix factorization and Kronecker

regularized least squares. In addition, some ideas from the
perspective of network sparsity28 or the statistical viewpoint29

might be useful to improve the prediction performance of
small molecule−miRNA associations.
Whether using feature extraction approaches to predict small

molecules and miRNA associations or mining potential
relationships from a graph mining perspective, the results are
analyzed from a single perspective. A computational model
based on a single perspective may provide prediction results
with poor robustness and low accuracy. Accumulated
studies30−32 have shown that the incorporation of multisource
(multimodal) information is broadly embraced in fields of drug
discovery, chemogenomics, etc. For example, Luo et al.15

proposed a calculation-based methodology named DTINet to
predict potential drug−target associations based on a
constructed heterogeneous network with integrated diverse
information, which includes four types of drug-related nodes
and six types of edges. Zeng et al.33 used an arbitrary-order
proximity embedded deep forest approach (AOPEDF) to
predict novel DTIs. In AOPEDF, the authors constructed a
large heterogeneous network incorporating 15 networks
covering network profiles and phenotypic, genomic, and
chemical information on drugs, diseases, and proteins/targets.
If we integrate multisource information in the prediction of the
association between small molecules and miRNA, it may
improve the prediction performance. Thus, we integrate
structural information of small molecules, sequence informa-
tion of miRNAs, and association network information to
predict small molecule-associated miRNAs, which potentially
provides a new perspective. Previous studies found that matrix
factorization achieved good performance in extracting network
information for association prediction. For example, Pliakos et
al.34 used neighborhood regularized logistic matrix factoriza-
tion methods to predict DTI on the reconstructed network and
achieved good performance. Ammad-Ud-Din et al.35 utilized
multitask matrix factorization to predict drug responses and
verified the powerful prediction ability of the model through
experiments. Meanwhile, the Restricted Boltzmann Machine
(RBM) model has broad application scenarios in both feature
enhancement and model prediction. For example, the dgMDL
model36 used a deep belief network composed of three layers
of restricted Boltzmann machines to filter genes and disease
features, and then predicted their associations. The IMTRBM
method37 enhanced the accuracy of previous miRNA−target
association prediction results based on Restricted Boltzmann
Machines. On the basis of the above studies, we plan to first
extract network features in a manner similar to matrix
completion, and then filter the features of multisource
information through restricted Boltzmann machines. Finally,
we predict the association of small molecules with miRNAs
based on the filtered features.
In this study, we present a multiview joint learning-based

computational framework named SMAJL to predict small
molecule−miRNA associations by integrating small molecule
structural information, miRNA sequence data, and heteroge-
neous network knowledge. The small molecular structural
features and miRNA sequences are obtained through RDKit
(http://www.rdkit.org/) and Pre-in-One.38 Meanwhile, the
network feature is extracted by enhancing matrix completion.
In our method, to verify the necessity of each stage, we
compare the performance of SMAJL with its variant model. To
better identify the superiority of our method, the AUC and
AUPRC of SMAJL and other state-of-the-art methods are
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compared to illustrate the good prediction performance of
SMAJL. In addition, we remove some known small molecule−
miRNA associations to predict potential small molecule-
associated miRNAs to indicate the robustness of SMAJL.
Finally, case studies are used to identify de novo small
molecule−miRNA associations through relevant literature to
further demonstrate the strong predictive power of the SMAJL
model.

2. METHODS

2.1. Overview. In this section, we propose a framework
named SMAJL to predict small molecule−miRNA associations.
Key to our algorithm is the multiview joint learning-based
method for feature aggregation, which can consider pharmaco-
logical, genomics, and network knowledge simultaneously.
Figure 1 provides an overview of the developed SMAJL
framework, which includes network feature extraction (Figure
1A), molecular structure feature extraction (Figure 1B), and a
joint learning model (Figure 1C). The process of the SMAJL
framework is described in detail below.
2.2. Network Representation Learning with Enhanc-

ing Matrix Completion. 2.2.1. Small-Molecule Clinical
Similarity. Anatomical Therapeutic Chemical (ATC) classi-
fication system codes are widely used to calculate the clinical
similarities of small-molecule drug pairs.30,39,40 The Drug-
Bank41 provides numerous ATC codes for small molecules
used in this work. We use the ATC codes to define the l level
similarity (Ss

l) of small molecules A and B as follows

S A B
A B
A B

( , )
ATC ( ) ATC ( )
ATC ( ) ATC ( )

l l l

l l
s =

∩
∪ (1)

where ATCl indicates all ATC codes at the l level. The clinical
similarity of small molecules A and B should be defined by
averaging all levels of similarity as noted below

S A B
S A B

k
( , )

( , )l
k l

s
1 s=

∑ =
(2)

where k indicates the five levels of the ATC code. The first
three layers of the ATC code represent anatomic classification,
therapeutic classification, and pharmacological classification,
which cover most of the information of the ATC code.42

Therefore, we use the first three layers of the ATC code to
calculate the clinical similarity of small molecules, which is
commonly used to facilitate the calculation of the similarity of
small molecular drugs.40

2.2.2. MiRNA Functional Similarity. In this work, we use
experimentally verified miRNA−gene interactions to calculate
miRNA functional similarity based on the calculation steps of
Xiao’s method.43 First, we download the gene functional
interaction network from HumanNet,44 which provides
associated log-likelihood scores (LLS) that represent the
strength of the interaction between two genes. Next, the min−
max normalization is used to normalize LLS to calculate gene
similarity. Finally, miRNA functional similarity can be obtained
by integrating miRNA−gene associations and gene similarities,
which is calculated based on the BMA method45 as follows

Figure 1. Overview of our proposed SMAJL framework. (A) SMAJL first integrates similarity network and association network to construct a
heterogeneous network, and applies enhancing matrix completion to obtain a low-dimensional vector representation of the features describing the
topological properties for each node. (B) SMAJL then uses RDKit to extract features of the small-molecule chemical structure and utilizes Pse-in-
One to obtain features of the miRNA secondary structure. After that, (C) SMAJL incorporates network features, small-molecule chemical structural
features, and the miRNA secondary structure as the input of the multiview joint learning model to predict potential small molecule−miRNA
associations.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00244
J. Chem. Inf. Model. 2020, 60, 4085−4097

4087

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00244?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00244?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00244?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00244?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00244?ref=pdf


S m m
S g G S g G

G G
( , )

( , ) ( , )
i j

g G j g G i

i j
m

i j=
∑ + ∑

| | + | |
∈ ∈

(3)

where Gi and Gj indicate the gene sets associated with mi and
mj, respectively, |.| denotes the number of genes in sets, and
S(g, G) represents the similarity of gene g and gene set G.
2.2.3. Enhancing Matrix Completion. Matrix completion is

an effective technique and has been widely used for data
representation.46−48 This method aims to recover the missing
values in the original matrix that has only a partially observed
entry set. Matrix factorization is a common method used for
matrix completion. Matrix factorization refers to using A and B
to approximate the matrix Y. Then, the elements of ABT can be
used to estimate the value of the element in the corresponding
invisible position in Y, and ABT can be regarded as the
factorization of Y. In this study, the small molecule−miRNA
association matrix Y N Ns m∈ × could be completed by two
matrices A N ks∈ × and B N km∈ × (k ≪ min (Ns,Nm)), and
Y ≈ ABT. Thus, the process of small-molecule-associated
miRNA identification is mathematically defined as the
following objective function

Y AB A B

A B

min ( ),

st 0, 0

A B,
T

F
2

F
2

F
2δ|| − || + || || + || ||

≥ ≥ (4)

where ∥·∥ indicates the Frobenius norm and δ represents the
contribution of the regularization term. To consider more
biological information from heterogeneous networks, the
similarities of small molecules and miRNAs are utilized as
prior knowledge to constrain the objective function of matrix
completion. We reconstruct the objective function as follows

Y AB A L A B L B

A B A B

min Tr( ) Tr( )

( ), st 0, 0

A B,
T

F
2 T

s
T

m

F
2

F
2

α β

δ

|| − || + +

+ || || + || || ≥ ≥ (5)

where Tr(·) represents the trace of a matrix, Ls = Ds − Ss and
Lm = Dm − Sm are the graph Laplacian matrices of Ss and Sm,

49

respectively, Ss and Sm indicate the similarities of small
molecules and miRNAs, Ds and Dm are diagonal matrices for
which entries are column (or row) sums of Ss and Sm,
respectively, and α and β are the regularization coefficients.
In this study, ATC codes are used to calculate the clinical

similarities between two small molecules. As described in the
section on the clinical similarity of small molecules, it is not
difficult to obtain the ATC codes and compute the correct
results. A large number of accumulated studies have
demonstrated that the similarity information can be directly
used as the neighbor regularization term of the main
optimization model to improve performance in the matrix
factorization model. For example, NRLMF50 is a neighbor-
hood regularized logistic matrix factorization model that
predicts drug−target interactions; the entire model is
optimized by directly using drug similarity and target protein
similarity as neighbor regularization terms of logistic matrix
factorization. GRGMF51 is used to identify potential links in
biomedical bipartite networks by graph regularized generalized
matrix factorization, which utilizes similarity information as
Laplacian regularized terms to enforce nodes with high
similarities to have similar representations in latent space.
However, unlike these methods, the SMAJL model uses ATC
codes to calculate the similarity of small molecules, but not all
ATC codes of small molecules can be obtained. Thus, the

similarity between small molecules without ATC codes and
other small molecules cannot be obtained using the calculation
method of clinical similarity. Thus, the small-molecule clinical
similarity matrix will be sparse and cannot truly represent the
similarity relationship of small molecules. To solve this
problem, we reconstruct the similarity matrix Ss* to take the
place of the original small-molecule similarity matrix Ss and
define a new indicator matrixW. The objective function can be
rewritten as follows

Y AB A L A B L B

W S S A B S

A B S

min Tr( ) Tr( )

( ) ( ),

st 0, 0, 0

A B,
T

F
2 T

s
T

m

s s F
2

F
2

F
2

s F
2

s

α β

γ δ

|| − || + +

+ || ⊙ − * || + || || + || || + || * ||

≥ ≥ * ≥ (6)

where S N N
s

s s* ∈ × represents the reconstruct small-molecule
similarity matrix for which the initial value is a random value
between 0 and 1 and it is the same size as matrix Ss. In
addition, W N Ns s∈ × represents the indicator matrix. If the ith
small molecule and the jth small molecule both have ATC
codes, then Wij = 1, otherwise 0. Here, ∥W⊙(Ss − Ss*)∥F2
indicates the enhancing term of the matrix completion and γ
represents the contribution of the enhancing term. Since the
matrix Ss* is used to represent more real small-molecule
similarities, the graph Laplacian matrices Ls should be
redefined as Ls = Ds − Ss*, where Ds is a diagonal matrix for
which entries are the column (or row) sums of Ss*.
To solve the optimization problem in eq 6, we decompose

the optimization problem into several subproblems. The whole
optimization process is similar to that in refs 52−54, which
requires updating some variables iteratively while other
variables are fixed. Thus, each subproblem converges to its
local minima. Then, we could obtain iteratively updated
formulas as follows

a a
YB S A

AB B D A Aik ik
s

T
s

α
α δ

←
+ *

+ + (7)

b b
Y A S B

BA A D B Bjk jk

T
m

T
m

β
β δ

←
+

+ + (8)

s s
AA W S

A W S S
2

( ) 2 2ii ii

T
s

s s

α γ
αζ γ δ

←
+ ⊙

+ ⊙ * + *′ ′
(9)

where

μ

∂ ∏ ∂

μ

A

a a

a a

a

a

a a a

( )

i

m

i
i

m

i

i

m

i
i

m

i

i

m

i

i

m

i

i

m

ni
i

m

ni
i

m

ni

1
1
2

1
1
2

1
2
2

1
2
2

1
1
2

1
2
2

1

2

1

2

1

2

∑ ∑

∑ ∑

∑

∑

∑ ∑ ∑

ζ = [ ]

= =

= =

=

=

= = = (10)

In eqs 7−9, aik, bjk, and sii′ represent the element values of
matrices A, B, and Ss*, respectively. The non-negative matrices
A and B are updated through eqs 7−9 until convergence.
Then, we obtain the small-molecule representation data A and
miRNA representation data B. Finally, matrices A and B are fed
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into the RBM model as the small molecules and miRNAs
network feature vectors for the next prediction. The detailed
process of objective function optimization is shown in the
Supporting Information.
2.3. Feature Engineering of Small-Molecule Structure

and miRNA Sequence. The chemical structure of small
molecules contains chemical properties; thus, the trans-
formation of the chemical structure of small molecules into
feature vectors and its application to the machine learning
model will provide a new perspective for the prediction of
small-molecule-associated miRNAs. First, we download the
chemical structure information (SMILES format) from the
DrugBank41 and calculate the MACCS fingerprints of each
small molecule using RDKit (http://www.rdkit.org/). Then,
each small molecule is expressed as a vector of length 166 for
the next computation.
Just as there are chemical properties in the chemical

structure of small molecules, there are biological properties in
miRNA sequences. We download miRNA sequence data from
miRBase.55 The miRNA sequence is composed of different
arrangements of four bases: A, U, G, and C. We calculate the
frequency of each base that appears in the sequence and obtain
a vector of length 4. The biological properties of an miRNA
sequence are determined by the different arrangements of four
bases. We also consider the combination of the two bases and
three bases and calculate the occurrence probability of each
combination. Then, a vector of length 16 is obtained by
combining the two bases with each other, and a vector of
length 64 could be obtained by combining the three bases with
each other. We connect the three vectors obtained, and each
miRNA sequence can be expressed as a vector of length 84.
The process of miRNA feature extraction can be realized by
Pse-in-One.38

2.4. Base Model RBM. The Restricted Boltzmann
Machine (RBM)37,56 is a random neural network (i.e., when
the neural node of the network is activated, there will be
random behavior). It consists of a layer of visible layers and a
layer of hidden layers. Neurons in the same layer are
independent of each other, and neurons are interconnected
(bidirectional) between different network layers. When the
network is trained and used, the information flows in both
directions, and the weights in both directions are the same.
However, the biases are different (the number of offset values
is the same as the number of neurons), and the structure of the
restricted Boltzmann machine is presented in Figure 2.

In the RBM, assume that v = (v1,v2,...,vnv) and h =

(h1,h2,...,hnh) represent the state vectors of the visible layer

and hidden layer, a nk∈ and b nv∈ are biases, and
W n nh v∈ × indicates the weight matrix. RBM is an energy-
based probability distribution model. The current energy
function of the RBM can be expressed as follows

E v h a v b h h Wv( , ) T T T= − − − (11)

With the energy function, the joint probability distribution of
(v, h) is described as follows

P v h
Z

( , )
1

e E v h( , )= −
(12)

where Z = ∑v,he
−E(v,h) is known as the partition function. Due

to difficulties in processing the partition function Z, we use the
maximum likelihood gradient to approximate it. First, the
conditional distribution from the joint distribution is derived as
follows

P h v
P h v

P v P v Z
a v b h h Wv( )

( , )
( )

1
( )

1
exp T T T| = = { + + }

(13)

It is easy to obtain the probability that the jth node in the
hidden layer is 1 on the basis of the given visible layer v

P h v
P h v

P h v P h v

b W v
b W v

( 1 )
( 1 )

( 1 ) ( 0 )
1

1 exp ( )
sigmoid( )

j
j

j j

j j j
j j j

:,
:,

= | =
= |

= | + = |

=
+ {− + }

= +

(14)

This method is equivalent to using the sigmoid activation
function, so we can write a complete conditional distribution
about the hidden layer

P v h a W h( 1 ) sigmoid( )j j j j:,= | = + (15)

These equations are important for iterative updates between
visible and hidden layers when training RBM models, but it is
difficult to calculate the expectations over all possible
configurations of input data. To solve this problem, Hinton
et al.,57 Tieleman et al.,58 and Cho et al.59 developed several
sampling techniques to estimate the expectations with a fixed
number of samples. For simplicity, we choose contrast
divergence (CD), and method details are referenced in ref 57.

2.5. Joint Learning Model. Joint learning was originally
proposed for natural language-processing tasks (for example,
entity recognition and entity standardization joint learning as
well as word segmentation and part of speech tagging joint
learning).60,61 In this study, joint learning is used to learn
cross-modality features from original features, including
network features and molecular structure features. As shown
in Figure 1C, the process of joint learning includes three steps,
and each step uses the RBM model. The RBM is used to first
enhance the network information representation, the repre-
sentation of the features connected by small-molecule
structural features and miRNA sequence features and then to
strengthen the connection of the first two outputs. In fact,
RBM is an unsupervised method for enhancing feature
representation, and the training process is the same in every
phase. Thus, the parameters are trained based on the objective
function

R Rmin F
2|| − ̂ || (16)

where R̂ represents the feature vector output by the RBM and
R is the input feature vector. First, small-molecule and miRNA
network features can be obtained by enhancing matrix
completion, and the connected small-molecule and miRNA
features are used as input to the RBM model to obtain an

Figure 2. Schematic of a Restricted Boltzmann Machine (RBM).
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output of equal length. Then, the output and input of RBM are
used to train the parameters in the objective function (eq 16).
After the RBM is stabilized, the output result will be used for
the input of the joint learning layer in the next stage. Second,
we obtain the chemical structure features of small molecules
and the secondary structure features of miRNA through RDKit
(http://www.rdkit.org/) and Pre-in-One.38 Similar to the first
step, the connected small-molecule and miRNA features are
used as RBM inputs to obtain an output of equal length.
Similarly, the output and input of RBM are used to train the
parameters in the objective function (eq 16). After the RBM is
stabilized, the output result will be used for the input of the
joint learning layer in the next stage. Finally, after training two
RBM submodels, we obtain the feature vectors hnet and vseq,
which contain network knowledge and structural information
(including small-molecule structure and miRNA structure).
Thus, we connect these features as follows

w h vconcat((1 ) , )net seq net seqμ μ= −_ (17)

where concat is a concatenation function and μ is used to
control the significance of network knowledge and structural
information. The connected vector wnet_seq is used as the input
to train the joint RBM. To avoid the difference in the scale of
the element values of different vectors, we used the two vectors
after the max−min normalization as input in the next
concatenation. The computational method of max−min
normalization is reported below

V
V V

V Vmax min
min

max min
=

−
−−

(18)

where V is the vector that needs to be regularized, and Vmax
and Vmin represent the maximum and minimum values of the
element in vector V, respectively.
The joint learning model is trained in an unsupervised

manner, and the resulting model can be further analyzed using
many approaches. In this study, we add an output layer with a
logistic regression model to identify the relationship score of
each small molecule−miRNA pair being associated using the
multiview joint learning-based method learned by the multi-
RBM.

3. RESULTS
3.1. Data Sources. The small molecule−miRNA associa-

tion data were downloaded from SM2miR.62 After removing
the same associations and merging the same mature miRNAs,
we obtained 228 small molecules, 794 miRNAs, and 3743
associations. The miRTarbase63 provides data, including
196 565 miRNA−gene associations for 794 miRNAs, to
calculate miRNA functional similarity. To compute small-
molecule similarity, we downloaded ATC codes from
DrugBank.41 Among the 228 small molecules, 112 small
molecules have ATC codes, which are subsequently used to
calculate the clinical similarity of small molecules. We

downloaded chemical structure information (SMILES format)
from DrugBank41 and miRNA sequence data from miRBase.55

Given that each small molecule has chemical structure
information (SMILES format) and each miRNA has sequence
data, there are 228 small molecule features and 794 sequence
features. Table 1 shows the details of multi-type data.

3.2. Experimental Setup. We evaluated the performance
of our model for small molecule−miRNA association
prediction with 5-fold cross-validation and repeated it 10
times. In this study, network representation vectors are
obtained by enhancing matrix completion based on the
known small molecule−miRNA association data set. Thus,
for each 5-fold cross-validation, the network representation
vector of small molecules and miRNAs needs to be rederived
by enhancing matrix completion to avoid the information of
the test set in the training set. We use the area under receiver
operating characteristic (ROC) curve (AUC) to evaluate the
performance of the SMAJL model. The ROC curve can be
plotted by the true-positive rate (TPR) and false-positive rate
(FPR), and we calculate TPR and FPR using TPR = [TP/(TP
+ FN)] and FPR = [FP/(FP + TN)] at different thresholds,
respectively. The recall is calculated by recall = [TP/(TP +
FN)] to evaluate algorithm performance, where TP, FP, TN,
and FN represent the true-positive, false-positive, true-
negative, and false-negative rates, respectively. The AUPRC
is another important evaluation metric, which is the area under
the precision/recall curve. We calculate precision and recall
through precision = [TP/(TP + FP)] and recall = [TP/(TP +
FN)] at different thresholds. The output of the SMAJL model
is the prediction score of associations between small molecules
and miRNAs using the logistic regression model. To balance
the number of positive samples and negative samples, we set
the same negative sample size as the positive sample to train
the logistic regression model, and the negative sample is
randomly chosen from all uncertain small molecule−miRNA
association data sets.

3.3. Overall Performance. Figure 3 shows the average
AUC obtained with various variant models from different views
of the overall framework. The model_Net represents the
vector that connects small-molecule network representation
and miRNA network representation as the input of the logistic
regression model directly. The model_NetRBM indicates that
the network representation vector is passed as an input to the
logistic regression model after passing through the RBM
model. The model_Seq represents the vector that connects
small-molecule structure features and miRNA sequence
features as the input of the logistic regression model directly.
The model_SeqRBM indicates that the structure representa-
tion vector is passed as an input to the logistic regression
model after passing through the RBM model. The
model_SeqNet represents the vector that connects the output
vector of the model_NetRBM and model_SeqRBM as the
input of the logistic regression model directly. As shown in
Figure 3, after passing through the RBM model, the models

Table 1. Details of Multi-Type Data

data type database description

small molecule−miRNA associations SM2miR62 228 small molecules, 794 miRNAs, and 3743 associations
MiRNA−gene associations miRTarbase63 794 miRNA and 196565 associations
small-molecule ATC codes DrugBank41 112 small molecules and their ATC codes for calculating clinical similarity
small-molecule SMILES DrugBank41 228 small molecules and their SMILES for extracting features.
miRNA sequence miRBase55 794 miRNA and their sequence for extracting features.
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achieved better performance than other models. After
incorporating network representation, the models obtained
better small molecule and miRNA structure feature results
compared with the single model. This experimental result
potentially has two explanations. First, the RBM model is used
to filter the original feature, which could remove various noise
data of feature vectors to improve prediction performance.
Second, the joint learning model incorporates multisource
information, including heterogeneous network information,
small-molecule structural information, and miRNA sequence
data, to improve prediction results. Thus, the multiview joint
learning-based method is a meaningful method to identify
small-molecule-associated miRNAs.
3.4. Selection of Hyperparameters. In the SMAJL

model, several hyperparameters are crucial for the overall
performance of the prediction. For enhanced matrix
completion, the hyperparameters α, β, γ, and δ represent the
contribution of the different regularization terms. We used the
grid search method to search α, β, γ, and δ of the SMAJL
model from {0.01, 0.1,1, 10} to discover the best parameter
combination. The representation vector dimension k of the
small molecule and miRNA in the enhancing matrix
completion is another important parameter; we select this
parameter from {80, 90, 100, 110, 120, 130, 140}. The
parameter μ represents the significance of network knowledge

and structural information, which is selected from {0.001,
0.005, 0.01, 0.05, 0.1, 0.5}. To avoid the influence of small
molecular structure information and miRNA sequence
information, we used the RBM model to filter the
representation obtained by the enhancement matrix and then
added the representation to the logistic model to select the
optimal parameters. For hyperparameters α, β, γ, and δ, as
shown in Tables S1−S4, we obtain the best performance when
the combination of parameters is α = 10, β = 0.01, γ = 0.1, and
δ = 0.1. For hyperparameters k and μ, Figure S1 shows that the
SMAJL model achieves optimal results when k = 120, and
Figure S2 indicates that better performance is obtained based
on μ = 0.01.

3.5. Comparison with State-Of-the-Art Models. We
compare the performance of SMAJL with six other methods
[i.e., NRLMF,50 SMiR_NBI,22 SMANMF,52 FSMMA,19

HSSMMA,23 RWR20] in the task of identifying small
molecule−miRNA associations. The detailed introduction
and parameter settings of the comparison method are reported
in the Supporting Information. The SMAJL model and the
comparison methods use the same data in this study.
We use 5-fold cross-validation to evaluate the performance

of SMAJL with the other six methods. All known small
molecule−miRNA associations are randomly divided into five
parts with the same size. Each part separately serves as the test
set, and the remaining parts serve as the training set. The
experimental results are shown in Figures 4 and 5. The ROC in
Figure 4a indicates that the SMAJL method obtained an AUC
value of 0.8746. For comparison, NRLMF, SMiR_NBI,
SMANMF, RFSMMA, HSSMMA, and RWR achieved AUC
values of 0.8552, 0.8378, 0.8326, 0.8128, 0.7703, and 0.7727,
respectively. Figure 4b shows the precision/recall curve of the
seven models, and the AUPRCs of seven models are 0.0498,
0.0419, 0.0341, 0.0319, 0.0155, 0.0230, and 0.0176,
respectively. This result indicates that joint learning is a
feasible model to reveal small molecule−miRNA associations.
Furthermore, the AUCs and AUPRCs of SMMART and other
methods with different runs were compared using paired t-tests
via 5-fold cross-validation. As shown in Table 2, the p-values
were less than 0.05, suggesting that the differences between
AUCs and AUPRCs were statistically significant. However, it is

Figure 3. AUC of SMAJL and different variant models.

Figure 4. Comparison of SMAJL with other models. (a) ROC curve and AUC value of the SMAJL model and comparison methods. (b) Precision/
recall curve and AUPRC value of the SMAJL model and comparison methods.
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important to guide wet experiments through the top-ranked
small-molecule-associated miRNAs obtained based on the
computational model. Thus, we used the recall and precision
to verify the performance of SMAJL and other methods within
the top k. Figure 5a,b show the recall and precision obtained
by applying the 5-fold cross-validation, respectively. From the
top 5% to the top 30%, the SMAJL model achieved better
recall and precision than other comparison methods. To
illustrate the predictive power of the SMAJL model on a single
small molecule, 5-fold cross-validation is used to obtain small
molecules. There are 28 small molecules with greater than 40
small-molecule-associated miRNAs. We choose 40 to prevent
sparseness. As shown in Table 3, we select the 13 small
molecules most relevant to human life and health. The
remaining small molecules are listed in Table S5. These results
confirm that the joint learning-based SMAJL model is an

effective prediction model for discovering small molecule−
miRNA associations. The superiority of the performance of the
SMAJL model may be the incorporation of network knowl-
edge, small-molecule structural information, and miRNA
sequence information. In addition, enhancement matrix
completion considers the sparsity of small-molecule clinical
similarity, which may be another reason for the excellent
performance of the SMAJL model.

3.6. Data Perturbation Analysis. To analyze the
performance of the SMAJL model with different ratios of
positive and negative samples, we removed 5% known
associations between small molecules and miRNAs randomly.
The hyperparameters of the SMAJL model were changeless,
and we still used the 5-fold cross-validation to identify the
performance. Table 4 shows that the SMAJL model achieves
greater accuracy (AUC = 0.8622 and AUPRC = 0.0426) than

Figure 5. Comparison of SMAJL with other models. (a) Recall of the SMAJL model and comparison methods. (b) Precision of the SMAJL model
and comparison methods.

Table 2. P-values Obtained Through Paired t-Test of the AUCs and AUPRCs of SMAJL and Other Compared Methods for 10
Runs

p-value

NRLMF SMANMF SMiR_NBI RFSMMA HSSMMA RWR

AUCs 2.74 × 10−4 2.252 × 10−7 2.51 × 10−8 4.129 × 10−9 3.604 × 10−11 4.694 × 10−12

AUPRCs 1.318 × 10−4 2.305 × 10−5 1.248 × 10−5 1.47 × 10−8 4.819 × 10−8 1.002 × 10−5

Table 3. AUC of SMAJL and Comparison Methods for the 13 Small Molecules

AUC

small molecule name SMAJL NRLMF SMiR_NBI SMANMF RFSMMA HSSMMA RWR

glucose 0.7094 0.7050 0.6281 0.6651 0.6260 0.6585 0.7027
perfluorooctane sulfonate 0.6825 0.6717 0.6001 0.5950 0.6818 0.5833 0.6490
reversine 0.6981 0.6335 0.6078 0.5901 0.5399 0.4848 0.6327
formaldehyde 0.8647 0.8535 0.8036 0.8178 0.7295 0.7551 0.8238
17β-estradiol 0.8916 0.8474 0.8341 0.8266 0.7691 0.6921 0.8284
dexamethasone 0.8936 0.8418 0.7970 0.8107 0.7020 0.7198 0.8025
diethylstilbestrol 0.7905 0.6778 0.6643 0.6796 0.6098 0.6410 0.6740
trichostatin A 0.8013 0.7962 0.7138 0.7772 0.6351 0.7610 0.7905
gemcitabine 0.8717 0.7922 0.7371 0.7693 0.6426 0.5715 0.7369
isoproterenol 0.8601 0.8514 0.8297 0.7992 0.7037 0.7572 0.8083
5-aza-2′-deoxycytidine 0.9310 0.9274 0.9278 0.9083 0.7525 0.7506 0.9119
cisplatin 0.7485 0.6752 0.6543 0.6537 0.6302 0.6541 0.7303
comfrey 0.9383 0.9097 0.8622 0.8466 0.8467 0.6577 0.8410
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the other six methods: NRLMF (AUC = 0.8533 and AUPRC
= 0.0378), SMiR_NBI (AUC = 0.8357 and AUPRC =
0.0323), SMANMF (AUC = 0.8334 and AUPRC = 0.0305),
RFSMMA (AUC = 0.8014 and AUPRC = 0.0139), HSSMMA
(AUC = 0.7653 and AUPRC = 0.0211), and RWR (AUC =
0.749 and AUPRC = 0.0148). For recall and precision of
various methods, the SMAJL model also obtained good
performance within the top 5% or other top performers in
Table 4. The results of various evaluation metrics demonstrate
that the SMAJL model exhibits better performance than other
methods for different ratios of positive and negative sample
data. There are two main reasons why SMAJL achieves better
performance. First, the combination of multisource informa-
tion is beneficial to improve model stability. Second, enhancing
matrix completion for data sparseness is beneficial to increase
model stability.
3.7. Ablation Study. In the Anatomical Therapeutic

Chemical (ATC) classification system, the active substances
are divided into different groups according to the organ or
system on which they act and their therapeutic, pharmaco-
logical, and chemical properties. Drugs are classified into
groups at five different levels. A significant amount of

therapeutic, pharmacological, and chemical information of a
drug is contained in five different layers.42 Thus, clinical
similarities of drug pairs derived from the drug ATC
classification systems codes have been commonly used to
predict new drug targets32,39 and drug synergy.40,64 To
quantify the benefits of ATC codes in the SMAJL model, we
set three variant models called model_a, model_b, and
model_c. Among them, model_a is the model generated
after removing clinically similar small molecules, model_b is
the model generated after replacing clinical similarity with
functional similarity, and model_c indicates that the sparse
clinical similarity model is used directly without increasing the
indicator matrix. We call the enhancement matrix completion
of the SMAJL model in this article model_SMAJL. Here, Y* =
ABT is used to represent the small molecule−miRNA potential
association score. To reduce the effect of small-molecule
structures and miRNA sequences, the enhanced matrix
completion-based model was employed to predict small-
molecule-associated miRNAs to quantify the benefits of ATC
codes. A detailed introduction of the three variant models is
provided in the Supporting Information. Figure 6 shows the
AUCs and AUPRCs of model_SMAJL and three variant

Table 4. Comparison of SMAJL with Other Methods with Various Evaluation Metrics After Removing 5% of Known
Associations

methods

SMAJL NRLMF SMiR_NBI SMANMF RFSMMA HSSMMA RWR

AUC 0.8622 0.8533 0.8357 0.8334 0.8014 0.7653 0.7490
AUPRC 0.0426 0.0378 0.0323 0.0305 0.0139 0.0211 0.0148
recall 5% 0.4191 0.4191 0.4191 0.3615 0.2489 0.3390 0.2406

10% 0.5823 0.5710 0.5682 0.5432 0.4135 0.4388 0.3730
15% 0.7004 0.6709 0.6976 0.6501 0.5316 0.5457 0.4947
20% 0.7609 0.7496 0.7511 0.7401 0.6259 0.6118 0.5922
25% 0.8200 0.8059 0.7947 0.7969 0.7103 0.6582 0.6444
30% 0.8650 0.8509 0.8411 0.8385 0.7820 0.7103 0.6858

precision 5% 0.0341 0.0334 0.0320 0.0288 0.0199 0.0277 0.0199
10% 0.0232 0.0228 0.0226 0.0217 0.0165 0.0185 0.0163
15% 0.0183 0.0178 0.0178 0.0173 0.0141 0.0144 0.0143
20% 0.0151 0.0150 0.0147 0.0148 0.0125 0.0124 0.0119
25% 0.0129 0.0129 0.0127 0.0127 0.0113 0.0109 0.0103
30% 0.0113 0.0113 0.0111 0.0112 0.0104 0.0096 0.0092

Figure 6. Comparison of model_SMAJL with other models. (a) Recall of model_SMAJL and comparison methods. (b) Precision of
model_SMAJL and comparison methods.
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models. We found that model_SMAJL exhibited high accuracy
(AUC = 0.847 and AUPRC = 0.0614) in 5-fold cross-
validation, outperforming those of several variant methods:
model_a (AUC = 0.789 and AUPRC = 0.0334), model_b
(AUC = 0.8275 and AUPRC = 0.0847), and model_c (AUC =
0.8269 and AUPRC = 0.0452) (Figure 6a,b). Table 5 shows

the recall and precision obtained by applying the 5-fold cross-
validation, respectively. Using the top 5% to top 30%, the
model_SMAJL achieved better recall and precision than other
comparison models. The overall performance of model_S-
MAJL is better than that of model_a, indicating that the ATC
code improves model performance. In addition, model_S-
MAJL is better than model_b in various evaluation metrics,
demonstrating that the clinical similarity of small molecules
based on ATC codes provides more effective information to
the model than the functional similarity of small molecules.
Finally, the AUC value of model_SMAJL is increased
compared with model_c, verifying that the indicator matrix
W added in eq 6 alleviates the sparsity in the clinical similarity
matrix.
3.8. Prediction Analysis of Gemcitabine and Dexa-

methasone. To further demonstrate the performance of
SMAJL in predicting potential associations between small
molecules and miRNAs, case studies are conducted using the
small molecules gemcitabine and dexamethasone. Here, we
make predictions using all of the known association data, and
the unknown association information is used for the candidate
validation set. For each of these two small molecules, we

collect the top 10 candidates by prioritizing the candidate small
molecule−miRNA association prediction scores. We use the
PMID number in PubMed to indicate that the literature can
confirm the association between small molecules and miRNA.
“Unconfirmed” indicates that the association has not been
confirmed.
Gemcitabine is a pyrimidine antitumor drug with the same

mechanism of action as cytarabine, and its main metabolite is
incorporated into DNA in cells, mainly in the G1/S phase.
Dexamethasone, a corticosteroid that prevents the release of
substances in the body that cause inflammation, is used to treat
different inflammatory conditions, such as allergic disorders
and skin conditions. When studying the pharmacology of
gemcitabine and dexamethasone, it is useful to assess the
association of gemcitabine and dexamethasone with miRNA.
Seven and five candidate miRNAs for gemcitabine and
dexamethasone are identified and supported by direct evidence
in Table 6, respectively. For example, studies65,66 indicate that
miR-29a functions as a potent autophagy inhibitor and
decreases cancer cell invasion by sensitizing them to
gemcitabine, and the inhibition of miR-29b attenuates atrophy
induced by dexamethasone treatment. All of the case studies
indicate that SMAJL is indeed capable of predicting potential
small-molecule-associated miRNAs.

4. CONCLUSIONS AND DISCUSSION

Accumulated studies have demonstrated that miRNAs play
important roles in various human diseases and could be
regarded as potential targets of small molecular drugs. Thus, it
is meaningful for drug discovery to discover potential small-
molecule-associated miRNAs. In this study, we used the
multiview joint learning model (SMAJL) to address the
problem of predicting the associations between small
molecules and miRNAs through integrating pharmacological,
genomics, and network knowledge. In SMAJL, an enhancing
matrix completion method was used to obtain network
knowledge, and two tools (RDKit and Pse-in-One) were
used to extract pharmacological information of small molecules
and genomics knowledge of miRNAs, respectively. Finally, we
used a multiview joint learning-based method to predict the
association score of small molecules and miRNAs.
Our experimental results showed that the SMAJL model

outperformed state-of-the-art models in 5-fold cross-validation
by directly modeling the incorporation prediction model. We
also predicted the association of small molecules with miRNA
by deleting 5% of known correlation data. The results showed
that SMAJL achieves better results in data perturbation,

Table 5. Recall and Precision of Model_SMAJL and
Comparison Methods Within Top k

methods of ablation study

model_SMAJL model_a model_b model_c

recall 5% 0.4786 0.3904 0.4666 0.4011
10% 0.6230 0.5401 0.6003 0.5615
15% 0.6939 0.6497 0.6644 0.6751
20% 0.7540 0.7246 0.7299 0.7326
25% 0.7981 0.7594 0.7834 0.7901
30% 0.8369 0.7955 0.8275 0.8329

precision 5% 0.0402 0.0328 0.0392 0.0337
10% 0.0262 0.0227 0.0252 0.0236
15% 0.0194 0.0182 0.0186 0.0189
20% 0.0158 0.0152 0.0153 0.0154
25% 0.0134 0.0128 0.0132 0.0133
30% 0.0117 0.0111 0.0116 0.0117

Table 6. Top 10 Potential miRNA Candidates Detected by SMAJL Based on Pubmed for the Three Selected Small Molecules

top 10 ranked predictions

small molecule no. of miRNAs confirmed rank miRNAs evidence rank miRNAs evidence

gemcitabine 7 1 mir-29b 30 915 884 6 mir-34a unconfirmed
2 mir-125b 26 606 261 7 mir-30c 27 506 865
3 mir-27b 2 5184 537 8 mir-25 24 040 438
4 mir-200c unconfirmed 9 mir-182 25 833 690
5 mir-29a 27 626 694 10 mir-9 unconfirmed

dexamethasone 5 1 mir-21 31 412 983 6 mir-182 24 871 856
2 mir-29b 28 541 289 7 mir-9 29 492 899
3 mir-125b unconfirmed 8 mir-199a unconfirmed
4 mir-34a 28 918 747 9 mir-10a unconfirmed
5 mir-30c unconfirmed 10 mir-203 26 748 295
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demonstrating that the SMAJL model has better robustness.
We use an ablation study to verify the effect of clinical
similarity based on ATC codes, and experimental results show
that ATC codes significantly improve the SMAJL model.
Finally, we validated our predictions from the published
literature. Seven and five of the top 10 predicted miRNAs for
gemcitabine and dexamethasone, respectively, were validated.
The results demonstrated the feasibility of our method for
predicting the potential association between small molecules
and miRNAs. There are three main reasons why the SMAJL
model can achieve good results. First, in the enhancement
matrix completion section, we considered the sparsity of small-
molecule clinical similarity and used enhancing terms to solve
this problem. Second, the robustness of the model was
enhanced by the fusion of the structural information of small
molecules and the sequence information of miRNAs.
Simultaneously, this method offered more useful information
for target prediction of small molecules. Third, the network
feature information and the structural feature information were
collaboratively predicted using the RBM-based multiview joint
learning model. The noise in the feature vector can be reduced
to improve model accuracy.
In conclusion, the SMAJL model proposed here incorpo-

rates multisource information using multiview joint learning-
based models for small molecule−miRNA prediction and
proved its effectiveness. In future work, integrating more useful
association information and relevant feature knowledge from
other databases and literature may provide an expandable
application perspective of our model. In addition, the predicted
results may have better guiding value for wet experiments if a
predictive model of the association between small molecules
and miRNAs can be constructed for a specific cancer cell line.
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