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ABSTRACT: MicroRNAs (miRNAs) are significant regulators of
post-transcriptional levels and have been confirmed to be targeted
by small molecule (SM) drugs. It is a novel insight to treat human
diseases and accelerate drug discovery by targeting miRNA with
small molecules. Computational approaches for discovering novel
small molecule−miRNA associations by integrating more hetero-
geneous network information provide a new idea for the multiple
node association prediction between small molecule−miRNA and
small molecule−disease associations at a system level. In this study,
we proposed a new computational model based on graph
regularization techniques in heterogeneous networks, called
identification of small molecule−miRNA associations with graph regularization techniques (SMMARTs), to discover potential
small molecule−miRNA associations. The novelty of the model lies in the fact that the association score of a small molecule−
miRNA pair is calculated by an iterative method in heterogeneous networks that incorporates small molecule−disease associations
and miRNA−disease associations. The experimental results indicate that SMMART has better performance than several state-of-the-
art methods in inferring small molecule−miRNA associations. Case studies further illustrate the effectiveness of SMMART for small
molecule−miRNA association prediction.

1. INTRODUCTION
MicroRNAs (miRNAs) are noncoding RNAs (ncRNAs) that
play important roles in many biological processes, such as cell
differentiation, proliferation, and apoptosis.1,2 Structurally,
each miRNA contains 19−24 nucleotides. Functionally,
miRNAs can regulate gene expression through a sequence-
specific approach.3−5 Because miRNAs are ubiquitous in
pathological processes, they have been suggested to become
potential drug targets,6−8 and the number of research hotspots
in miRNA-centered computational biology has increased.9−11

Recent studies have found that mature miRNAs and their
precursors can be targeted by drugs.6,12−14

A recent study estimated that developing a new Food and
Drug Administration (FDA)-approved drug cost an average of
2.6 billion in 2015, up from just 802 million in 2003.15 Thus, it
is a time-consuming and expensive process to develop a new
drug. Modern drug discovery aims to speed up the research
steps and thus reduces cost by leveraging computational tools
on drug discovery. In short, molecular compounds are filtered
through a progressive series of tests, which determine their
properties, effectiveness, and toxicity for later stages. The
computational method is increasingly being used to better
predict molecular properties in early stages, which can
significantly reduce the load of later processes (e.g., clinical
trials) and save tons of resources as well as time.16−18 The
prediction of the association between small molecules (SMs)
and miRNA is one of the important methods of drug

discovery. Predicting the association between small molecules
and miRNA based on computational models can reduce the
workload of wet laboratory experiments and save resources.
Meanwhile, predicting the association between drugs and
diseases also is an important research area of drug
discovery.19−21 If the association of drug−miRNA (a target)
and drug−disease can be completed in the same system, there
may be a significant improvement in predicted performance.
Hence, it is necessary to propose some novel calculative
models to systematically analyze the associations between
some drugs and miRNAs to accelerate the research of
pharmacogenomics.
As mentioned above, there have been some computational

methods to predict the associations between small molecules
and miRNAs in previous studies.22 For instance, feature-based
models are the primary types. Velagapudi et al.23 described a
method called Inforna that designs small molecules only from
the sequence level of miRNA. Based on the above studies,
Velagapudi et al.23 employed a novel version termed Inforna
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2.0,24 which is an online web server. In addition to the way in
which sequences are transformed into features, there are also
some ways to extract features from the literature. Xie et al.25

developed a new text mining method, called EmDL, to
discover the associations between small molecule drugs and
miRNAs of affecting drug efficacy from the literature. Later,
the authors compiled the association data of small molecules
and miRNAs found in the literature into a database.26

Similarly, a noncoding RNA and drug association database
NRDTD27 is proposed. The NRDTD data set mainly contains
97 noncoding RNAs and 96 drugs. Another important method
to infer small molecule-associated miRNAs is developed by
extracting features from the similarity data of miRNAs and
small molecules. Wang et al.28 proposed a novel calculation
framework (RFSMMA) using random forest model to predict
potential small molecule−miRNA associations based on
extracting features from the similarity matrix of small
molecules and miRNAs. The feature-based method has
achieved good results in small molecule−miRNA association
prediction, but most feature-based methods are supervised
methods. However, sampling is a key step in the supervised
method; the sampling method is one of the important methods

to achieve outstanding performance in the imbalanced data set.
In this study, it is almost impossible to obtain negative samples
of small molecule-related miRNAs. Therefore, many machine
learning methods, such as supervised learning, etc., selected
negative samples from neutral samples for training models,
which may add noise into the training set and affect the
prediction performance. Furthermore, it is hard to decide
which sampling method is suitable for machine learning
methods of predicting small molecule−miRNA associations.
Overall, predicting small molecule-associated miRNAs without
selection of negative samples is a new and promising
perspective.
In contrast, network-based models are a type of predictive

model that do not require sampling for prioritizing the small
molecule−miRNA associations. Lv et al.29 utilized random
walk with restart (RWR) to predict potential miRNA targets of
831 small molecules in a heterogeneous network. Considering
the integration of neighborhood information, Li et al.30

developed a network-based framework, termed SMiR-NBI, to
use miRNAs as potential biomarkers for characterization of
anticancer drug response in a heterogeneous network, which
included drugs, genes, and miRNAs. Guan et al.31 introduced a

Figure 1. Pipeline of SMMART for discovering unknown associations between small molecules and miRNAs. (A) Biological heterogeneous
network constructed by the associations of small molecules, miRNAs, and disease nodes and their similarities. (B) Application of the KNNP model
to improve the prediction performance of the model. (C) Application of graph regularization technology to fuse multisource information and
predict the association of potential small molecules and miRNAs. (D) Prediction matrix of small molecule−miRNA association, the prediction
matrix of small molecule−disease association, and the prediction matrix of miRNA−disease association. Finally, we use the correlation matrix score
of small molecule−miRNA for the SMMART model.
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prediction method, called GISMMA, which used the graphlet
interaction to predict unknown small molecule−miRNA
associations. Zhao et al.32 presented a model (SNMFSMMA)
based on symmetric non-negative matrix factorization. Qu et
al.33 proposed a HeteSim-based inference model for predicting
novel small molecule−miRNA associations, called HSSMMA,
which implements a path-based measurement method of
HeteSim on a heterogeneous network. Due to the sparsity of
network data, Yin et al.34 proposed a computational framework
to predict small molecule−miRNA associations based on
sparse learning and heterogeneous graph inference. However,
most of the existing methods for discovering associations
between small molecules and miRNAs are limited to only
miRNA similarity networks, small molecule similarity net-
works, or bipartite small molecule−miRNA models. Mean-
while, miRNAs are promising therapeutic targets for complex
diseases because small molecule drugs can regulate the
expression of disease-related miRNAs.35 Then, if both drug−
miRNA (a target) and drug−disease relationships are
considered for drug repositioning, this may be a new
perspective for computer-aided drug design. Qu et al.36

developed a computational model (TLHNSMMA) to uncover
potential small molecule−miRNA associations based on a
triple layer heterogeneous network containing small molecules,
miRNAs, and diseases. Wang et al.37 used cross-layer
dependency inference on multilayered networks to predict
small molecule-associated miRNAs (CLDISMMA), which
constructed multilayered networks composed of SMs,
miRNAs, and diseases. These methods have achieved good
performance in the prediction of small molecule−miRNA
relationships and may provide great help for the downstream
wet experiment of small molecule-related miRNA relationship
prediction. To fully consider the nodes and their associations,
and effectively fuse multisource information in heterogeneous
networks, we utilize graph regularization technology to predict
the associations between small molecules and miRNAs by
correlating small molecule−miRNA associations with small
molecule−disease at a system level.
In this study, we described a novel framework, termed

identification of small molecule−miRNA associations with
graph regularization techniques (SMMARTs), to systemati-
cally infer unknown associations between small molecules and
miRNAs. The SMMART model fully exploits the topological
information of heterogeneous networks that consider small
molecule−miRNA associations and small molecule−disease
associations at a system level to achieve a better predictive
performance of small molecule−miRNA association. To
illustrate the performance of the SMMART model, we use
the 5-fold cross-validation method to compare with other
models. At the same time, to identify robustness, we use 50−
90% of the known association data as the training set and use
the remaining data as the test set to verify performance. Finally,
case studies are used to further analyze the ability of the
SMMART model to discover new small molecule−miRNA
associations.

2. METHODS AND MATERIALS
2.1. Method Overview. We develop a novel method

called SMMART to discover small molecule−miRNA
associations. Figure 1 shows the overall workflow of our
framework, which consists of three main steps. First, we
construct a heterogeneous network, which includes three types
of nodes (small molecules, miRNAs, and diseases). Second, the

graph regularization technique is used to construct the
predictive model (SMMART) by combining similarity prior
knowledge, internode associations, and topological character-
istics. Third, the association score between small molecule and
miRNA is obtained based on the results of our framework.

2.2. Computation and Representation of Multisource
Data. 2.2.1. Representation of Small Molecule Similarities.
2.2.1.1. Clinical Similarity. As the chemical structure,
pharmacological effects, and therapeutic effects of small
molecules are incorporated in the ATC code,38 the small
molecule clinical similarity calculated by the ATC code in
many studies has been widely used to improve the perform-
ance of drug target prediction39 and drug combination
study.40,41 Thus, we download the ATC codes from
DrugBank42 and use ATC codes to calculate the clinical
similarity of small molecules.40,43 The range of clinical
similarity Sa

s of small molecules is between 0 and 1.
2.2.1.2. Chemical Similarity. DrugBank database42 contains

chemical structure information (SMILES format) and the
Open Babel44 can be utilized to compute MACCS fingerprints
of each drug. Chemical similarity is widely used in drug
discovery and drug combinations,40,41 and its value ranges
from 0 to 1.
Considering that there may be bias in the calculation of

individual small molecule similarity, a weighted combination
strategy is used to integrate two similarities as follows

μ μ
μ

=
+

∑
=S

S S
i

( )
; ( 1, 2)

i i

s 1 a
s

2 c
s

(1)

where Sa
s and Sc

s represent drug clinical similarity and chemical
similarity, respectively. We set the parameter μi = 1 (i = 1, 2),
and each similarity has the same weight.

2.2.2. Representation of miRNA Similarities. 2.2.2.1. Func-
tional Similarity. Accumulated studies show that the func-
tional similarity of miRNAs can greatly improve the perform-
ance of small molecule−miRNA association prediction.28

Thus, we use gene functional similarities and miRNA−gene
associations to calculate miRNAs’ similarity. Refer to the
calculation steps of Xiao et al.45 The functional similarity of
miRNA mi and mj is calculated by the best-match average
(BMA) method46 as follows

=
∑ + ∑

| | + | |
∈ ∈

S m m
S g G S g G

G G
( , )

( , ) ( , )
i j

g G j g G i

i j
f
m i j

(2)

where Gi and Gj represent the gene sets associated with mi and
mj, respectively. |·| denotes the number of genes in the sets.

2.2.2.2. Sequence Similarity. miRNA sequence similarity is
widely used to improve the performance of miRNA-related
association prediction because miRNA sequences contain rich
biological information.28 Meanwhile, we download the miRNA
sequences from miRBase data set.47 miRNAs are single-
stranded small RNAs of approximately 21−23 bases (A, U, G,
and C) in size. There are 16 types of base-pairs (AA, AU, AG,
..., CG, CC) through the two bases that are combined.
Therefore, each miRNA sequence can be represented as a 16-
dimensional vector, where the value is the frequency at which
the corresponding base combination appears.48 Finally, we use
cosine similarity to calculate the feature similarity of miRNAs
as follows
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where Mi and Mj represent feature vectors of miRNA mi and
mj, respectively.
Similar to the drug similarity calculation, considering that

there may be bias in the calculation of individual miRNA
similarity, a weighted combination strategy is used to integrate
two similarities as follows

τ τ
τ

=
+

∑
=S

S S
i

( )
; ( 1, 2)

i i

m 1 f
m

2 s
m

(4)

where Sf
m and Ss

m represent miRNA functional similarity and
feature similarity, respectively, and their value ranges from 0 to
1. We set the parameter τi = 1 (i = 1, 2), and each similarity has
the same weight.
2.2.3. Representation of Disease Similarity. In this study,

we can download the denominations of diseases, which can be
represented as a directed acyclic graph (DAG)49 from the
MeSH database (http://www.ncbi.nlm.nih.gov/). In a DAG, a
disease is represented by a node, and the relationship between
diseases is represented by the link. A disease could be defined
as DAGd = (d, Sd, Ld), where Sd is the set of all nodes
(including node d itself) and Ld is the set of links. The
semantic contribution of a disease t to disease d can be
obtained as follows

=

= {Δ* ′ | ′ ∈ } ≠

l
m
ooo
n
ooo

D t

D t D t t t t d

( ) 1

( ) max ( ) children of if

d

d d (5)

where Δ represents the semantic contribution parameter.
According to the literature,49 we set Δ = 0.5. According to the
definition of semantic contribution value, the semantic value of
disease d can be obtained as follows

∑=
∈

d D tDV( ) ( )
t S

d
d (6)

The more similar the DAG of the two diseases, the higher the
similarity between the two diseases. We can compute the
semantic similarity of disease di and dj based on the following
equation

=
∑ +

+
∈ ∩

S d d
D t D t

d d
( , )

( ( ) ( ))

DV( ) DV( )i j

t S S d d

i j

d di dj i j

(7)

where DV(di) and DV(dj) represent the semantic values of
disease t related to disease di and dj, respectively. The range of
semantic similarity is between 0 and 1.
2.2.4. Representation of Heterogeneous Relationships.

The small molecule−miRNA network is constructed by the
known small molecule−miRNA association. Let matrix Ysm ∈
Ns × Nm represent the association between Ns small molecules
and Nm miRNAs. If small molecule si was observed to be
associated with miRNA mj, then (Ysm)ij is 1, otherwise 0. The
small molecule−miRNA association data set can be obtained
from SM2miR.50 Same representation as small molecule−
disease associations, the matrix Ysd ∈ Ns × Nd represents the
association case between Ns small molecules and Nd diseases,
and the matrix Ymd ∈ Nm × Nd represents the association
between Nm miRNAs and Nd diseases. The small molecule−
disease association data set and miRNA−disease association

data set can be downloaded from the comparative
toxicogenomics database (CTD)51 and HMDD,52 respectively.

2.3. K Nearest Neighbor Profiles (KNNPs). To predict
novel small molecule (miRNA), which has no associations with
other miRNA (small molecule), the K nearest neighbor profiles
can be utilized to solve this problem.45 Assume that sets = {s1,
s2, ..., sNs

} and setm = {m1, m2, ..., mNm
} represent the set of Ns

small molecules and Nm miRNAs, respectively. In matrix Ysm,
the ith row vector Ysm

s (si) = (Yi1, Yi2, ..., YiNm
) indicates the

interaction profile for small molecule si, and the jth column
vector Ysm

m (mj) = (Yj1, Yj2, ..., YjNs
) represents the interaction

profile for miRNA mj. For each small molecule sq, we can
obtain a novel interaction profile based on its similarities with
other K nearest known small molecules as follows

∑ ω=
=

Y s
Q

Y s( )
1

( )
i

K

i ism
s

q
s 1

sm
s

(8)

where s1 to sK represent small molecules that are sorted in
descending order based on their similarity to sq. The weight
parameter can be denoted as ωi = εi−1 × Ss(si, sq), indicating
that the more similar si is to sq, the higher the weight that is
assigned. ε ∈ [0,1] is a decay coefficient, and Qs = ∑1≤j≤KS

s(si,
sq) represents the normalization term. Similarly, the novel
interaction profile for each miRNA mi can be defined as follows

∑ ω=
=

Y m
Q

Y m( )
1

( )
j

K

j jsm
m

q
m 1

sm
m

(9)

where m1 to mK represent miRNAs that are sorted in
descending order based on their similarity to mq. ωj denotes
the weight parameter, and Qm =∑1≤j≤KS

m(sj, sq) represents the
normalization term. Afterward, the adjacency matrix Y can be
updated as follows

= ̅Y Y Ymax( , )sm sm sm (10)

where Y̅sm = (a1Ysm
s + a2Ysm

m )/∑ai (i = 1, 2) and ai is a weight
parameter. According to experience, we assign the same weight
to each separated similarity, that is, set a1 = a2 = 1. In the same
manner, the novel adjacency matrices Ysd and Ymd can be
obtained based on K nearest neighbor profiles.

2.4. Small Molecule−miRNA Association Prediction
Model. 2.4.1. Modeling Prior Knowledge of Similarities. In a
heterogeneous network, the similarity between entities
contains a variety of biological information. Therefore, we
use three types of similarities to construct a prediction model.
To build the model, we refer to Xuan’s method.20,53 First, let C
= (Cij) ∈ Ns × Nm represent the association score matrix
between small molecule and miRNA, where Cij ≥ 0 indicates
the probability score associated with small molecule si and
miRNA mj. The ith row of matrix C is denoted as Ci
representing the likelihood of association between small
molecule i and all miRNAs, and the jth column of matrix C
is denoted as (CT)j, representing the likelihood that miRNA j is
associated with all small molecules. The more two small
molecules are associated with similar miRNAs, the more
similar they are. Therefore, (Ci) (C

T)j = (CCT)ij can represent
the similarity of small molecule si and sj, and (Ss)ij indicates the
known clinical similarity between small molecule si and small
molecule sj. We use the clinical similarity to constrain the
update of matrix C for incorporating small molecule clinical
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similarity into matrix C. Then, small molecule similarity matrix
Ss can be factorized as CCT as follows

|| − ||
≥

S CCmin
C 0

s T
F
2

(11)

where a∥·a∥F represents the Forbenius norm of a matrix. For
entity miRNAs and diseases, they have the same properties.
We can make full use of the miRNA similarity and disease
similarity and use the same factorization method to calculate
the association score matrix based on the corresponding actual
similarity. Therefore, we can obtain the formula

γ|| − || + || − ||

+ || − || + || − || + || − ||

+ || − ||

≥ ≥ ≥
S CC S C C

S BB S AA S A A

S B B

min (

)

A B C0, 0, 0

s T
F
2 m T

F
2

m T
F
2 s T

F
2 d T

F
2

d T
F
2

(12)

where A = (Aij) ∈ Ns × Nd represents the association score
matrix between small molecule and disease, B = (Bij) ∈ 
Nm × Nd represents the association score matrix between miRNA
and disease, and Sm and Sd represent the known miRNA
similarity and disease similarity, respectively. γ is a hyper-
parameter that adjusts the contribution of prior knowledge.
2.4.2. Modeling the Node Associations. After the KNNP

operation, the association scores of small molecule−miRNA
association matrix Ysm ∈ Ns × Nm, small molecule−disease
association matrix Ysd ∈ Ns × Nd, and miRNA−disease
association matrix Ymd ∈ Nm × Nd are between 0 and 1. The
number of nonzero elements in matrices Ysm, Ysd, and Ymd are
much less than zero elements so that the process of model
optimization is based on known relationships. YA ∈ Ns × Nd is
an indicator matrix; if (si,dj) is known small molecule−disease
associations, then (YA)ij = 1, otherwise 0. In a similar way, we
can obtain YB ∈ Nm × Nd and YC ∈ Ns × Nm. Obviously, YA, YB,
and YC are, respectively, equal to Ysd, Ymd, and Ysm before the
KNNP operation. Note that A, B, and C represent the
association score matrix of small molecule−disease, miRNA−
disease, and small molecule−miRNA, respectively, and the
association score matrix should be close to the known
association matrix; therefore, the constraint can be obtained
as follows

α || ⊙ − || + || ⊙ − ||

+ || ⊙ − ||
≥ ≥ ≥

Y Y A Y Y B

Y Y C

min ( ( ) ( )

( ) )

A B C
A B

C

0, 0, 0
sd F

2
md F

2

sm F
2

(13)

where α is a hyperparameter that adjusts the contribution of
the node associations and ⊙ is the Hadamard product.
2.4.3. Modeling the Topology Characteristics of Associ-

ations. In a heterogeneous network consisting of small
molecules, miRNAs, and diseases, it is well known that the
more the same diseases associated with small molecule si and
miRNA mj, the more likely the small molecule si is related to
miRNA mj. Since Ai indicates the likelihood of association of
small molecule si with all diseases and (BT)j indicates the
likelihood of association of miRNA mj with all diseases, (AB

T)ij
can represent the likelihood of association between small
molecule si and miRNA mj. However, Cij also represents the
likelihood of association between small molecule si and miRNA
mj; therefore, we can minimize the interpolation of ABT and C
to obtain the constraints of A, B, and C for the association
score matrix tends to be more realistic. The specific formula is
as follows

β || − ||
≥ ≥ ≥

C ABmin
A B C0, 0, 0

T
F
2

(14)

where β is a hyperparameter that adjusts the contribution of
the topology characteristics.

2.4.4. Considering the Sparseness of Associations. It is
well known that the potential associations of small molecule−
miRNA, small molecule−disease, and miRNA−disease are
sparse.45 Therefore, the 1-regularization is applied to matrices
A, B, and C simultaneously for studying sparse underlying
associations. Meanwhile, the use of 1-regularization can
prevent the model from overfitting. The objective function
can be obtained as follows

δ || || + || || + || ||
≥ ≥ ≥

A B Cmin ( )
A B C0, 0, 0

1 1 1 (15)

where δ is a hyperparameter that controls the contribution of
the sparse term.
The objective functions of modeling the prior knowledge of

similarities in eq 12, modeling the node associations in eq 13,
modeling the topology characteristics of associations in eq 14,
and modeling the sparseness of associations in eq 15 are
combined into a unified objective function as follows

γ

α

β

δ

|| − || + || − ||

+ || − || + || − || + || − ||

+ || − || + || ⊙ − ||

+ || ⊙ − || + || ⊙ − || +
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≥ ≥ ≥
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S B B Y Y A

Y Y B Y Y C
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) ( ( )
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( )

A B C

A

B C

0, 0, 0

s T
F
2 m T

F
2

m T
F
2 s T

F
2 d T

F
2

d T
F
2

sd F
2

md F
2

sm F
2

T
F
2

1 1 1 (16)

2.5. Initialization of the Association Score Matrices.
This model relies on the selection of initial values in the
iterative process, and the initial values are not unique. Initial
values of A, B, and C directly affect the quality of the results. In
the SMMART model, we use an improved singular value
factorization method54 to initialize A, B, and C. We
decomposed Ysm ∈ Ns × Nm into Usm ∈ Ns × Ns, ∑sm ∈ 
Ns × Nm, and Vsm ∈ Nm × Nm, where∑sm is a diagonal matrix and
the value of the diagonal is a singular value. After normalizing
matrices Usm and Vsm, we obtain the initialized C =
Usm∑smVsm

T . In the same way, we can obtain A and B after
initialization.

2.6. Optimization. It is complicated to solve the objective
function eq 16 directly; thus, we decompose the optimization
problem into several subproblems and then optimize the
subproblems iteratively.

2.6.1. C-Subproblem. We use the method of controlling
variables,55 that is, the values of A and B are fixed when
updating C. The subproblem can be solved as follows

γ

α β

δ

= || − || + || − ||

+ || ⊙ − || +

|| − || + || ||

≥ L C S CC S C C

Y Y C

C AB C

min ( )

( )

C

C

0
s T

F
2 m T

F
2

sm F
2

T
F
2

1 (17)

By setting the derivative of L(C) with respect to C to 0, the
formula can be obtained as
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(18)

where OC ∈ Ns × Nm is an identity matrix with all elements
being 1. According to the Lagrange multipliers,56 by multi-
plying both sides of eq 16 by Cij, we obtain
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Therefore, we determine the update rules as follows
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The matrix C is updated based on eq 18 until convergence.
2.6.2. B-Subproblem. When updating B, the values of C and

A are fixed. The subproblem can be solved as follows
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By setting the derivative of L(B) with respect to B to 0, the
formula can be obtained as follows
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where OB ∈ Nm × Nd is an identity matrix with all elements
being 1. According to the Lagrange multipliers,56 by multi-
plying both sides of eq 20 by Bij, we obtain
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Therefore, we determine the update rules as follows
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The matrix B is updated based on eq 22 until convergence.
2.6.3. A-Subproblem.When updating A, the values of B and

C are fixed. The subproblem can be solved as follows
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By setting the derivative of L(B) with respect to B to 0, the
formula can be obtained as follows
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where OA ∈ Ns × Nd is an identity matrix with all elements
being 1. According to the Lagrange multipliers,56 by multi-
plying both sides of eq 24 by Aij, we obtain
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Therefore, we determine the update rules as follows
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The matrix A is updated based on eq 26 until convergence.
After obtaining the final matrices A, B, and C, we can obtain

the predicted correlation scores of small molecules and
miRNAs from matrix C and obtain the predicted correlation
scores of small molecules and diseases from matrix B. In the
next section, the entire experimental process is described in
detail. Overall, the complexity of our method is O(KNs + KNm
+ Niter), where K is the number of the nearest neighbor profiles,
Ns and Nm represent the number of small molecules and
miRNAs, respectively, and Niter is optimization iteration times.
We run the codes at 2.6 GHz Intel(R) Core(TM) i7-9750H
CPU with 32 GB RAM, and the running time of SMMART is
51 s.

2.7. Software Package. We upload the R software
package through GitHub to https://github.com/CS-BIO/
SMMART, containing all data sets and codes. Furthermore,
the package can be used to execute 5-fold cross-validation, as
well as select hyperparameters for reproducing the results.

3. RESULTS
3.1. Data Collection and Preprocessing. The gold

standard data set for discovering potential small molecule−
miRNA associations are obtained from SM2miR,50 which is a
database that contains a total of 5112 experimentally verified
associations. First, different small molecule−miRNA pairs with
the same mature miRNA can be merged. Then, the same
associations need to be removed. Therefore, all miRNA
calculations involved in this model are based on the precursor
miRNA. Finally, a total of 4182 experimentally verified
associations can be obtained from SM2miR,50 which includes
251 small molecules and 901 miRNAs. The comparative
toxicogenomics database (CTD)51 provides association data
between small molecules and diseases. We download miRNA−
disease association data from the HMDD database.52 To
construct a heterogeneous network, the numbers of small
molecules, miRNAs, and diseases need to be unified. The
numbers of small molecules and miRNAs are based on
SM2miR50 (including 251 small molecules and 901 miRNAs).
To prevent the association data from being too sparse, we
choose the intersection of diseases in the CTD database51 and
the HMDD database52 (obtaining 361 diseases). The chemical
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structure and the ATC code of the small molecule for
calculating chemical similarity and clinical similarity are from
the DrugBank database.42 The miRTarbase database57 and
miRbase database47 provide miRNA−gene association data
and sequence data for computing miRNA functional similarity
and sequence similarity. We download disease semantic data
from the Mesh database to calculate disease semantic
similarity. Finally, small molecule similarity matrix Ss ∈ 
251 × 251, miRNA similarity matrix Sm ∈ 901 × 901, and disease
similarity matrix Sd ∈ 361 × 361 can be obtained for discovering
unknown associations between small molecules and miRNAs.
The detailed representation of all data is shown in Table S1.
3.2. Experimental Settings. To study the performance of

SMMART, 5-fold cross-validation is applied and repeated 10
times. For each data set, we randomly divide the associations
between small molecules and miRNAs into five parts of the
same size. Each part takes turns as the test set and the
remaining four parts as training sets. We performed a total of
10 times of 5-fold cross-validation and averaged each group of
TPR, FPR, recall, and precision obtained for each 5-fold. The
final average value was used to calculate AUC, AUPR value,
draw receiver operating characteristic (ROC) curve, and
precision−recall (PR) curve. For SMMART method, the
regularization coefficient α is selected from {10−3, 10−2, 10−1,
100, 101}, γ is chosen from {1, 5, 10, 15, 20}, δ is obtained
from {1, 10, 50, 100, 150} and β is acquired from {0.1, 0.5, 1,
5, 10}. The k of K nearest neighbor profiles is chosen from {1,
2, 3, 4, 5}.
We consider several evaluation metrics to evaluate the

performance of association prediction results between small
molecules and miRNAs. The recall, specificity, G_mean, and

precision are obtained as follows: recall = TP/(TP + FN),
specificity = TN/(TN + FP), G_mean = (recall ×
specificity)0.5, and precision = TP/(TP + FP). TP, FP, TN,
and FN represent true positive, false positive, true negative,
and false negative, respectively. We also use the area under the
ROC (AUC58), the area under the precision/recall curve
(AUPRC), and P-value (calculated by a paired t-test59) as
important evaluation metrics to evaluate the overall perform-
ance.

3.3. Cross-Validation Experiments. We compare the
SMMART model with several state-of-the-art models (see
Section 1 for more details), namely: RWR,29 RFSMMA,28

SMiR_NBI,30 TLHNSMMA,36 and CLDISMMA.37 The data
sets of the SMMART model are used for the comparison
method simultaneously. The selection of hyperparameters for
the comparison method is detailed in the Supporting
Information. The AUCs of SMMART, RWR, RFSMMA,
SMiR_NBI, TLHNSMMA, and CLDISMMA are 0.8588,
0.7709, 0.8245, 0.8099, 0.7566, and 0.7786, respectively,
where the AUC of SMMART is significantly higher than
those of other methods (Figure 2a). Figure 2b shows that
SMMART achieves better performance than the other five
methods: RWR (AUPRC = 0.0135), RFSMMA (AUPRC =
0.0157), SMiR_NBI (AUPRC = 0.013), TLHNSMMA
(AUPRC = 0.015), and CLDISMMA (AUPRC = 0.0188).
Furthermore, the AUCs and AUPRCs of SMMART and the
other methods with different runs were compared using a
paired t-test via 5-fold cross-validation. As shown in Table 1,
the p-values were less than 0.05, suggesting that the differences
between AUCs and AUPRCs were statistically significant. To
further verify the performance of the SMMART model, we

Figure 2. (a) ROC and AUC of six methods on small molecule−miRNA association prediction task and (b) precision/recall curve and AUPRC of
six methods on small molecule−miRNA association prediction task.

Table 1. P-Values Obtained through a Paired t-Test of the AUCs and AUPRCs of SMMART and Other Compared Methods for
10 Runs

P-value

RWR RFSMMA SMiR_NBI TLHNSMMA CLDISMMA

AUCs 1.667 × 10−11 2.92E × 10−8 5.207 × 10−10 1.023 × 10−9 1.168 × 10−11

AUPRCs 7.496 × 10−10 5.854 × 10−10 2.644 × 10−10 1.913 × 10−7 4.38 × 10−6
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compare recall and G_mean with the other five comparison
methods. Figure 3a,b shows the recall and G_mean of the six
methods, which indicate that SMMART achieves higher
performance than the other methods within top 5−30%.
Table S2 contains detailed numerical comparison information
of various indicators. For example, precision of the SMMART
model is better than that of any comparison method. There are
two main reasons why the SMMART model can achieve good
results under evaluation metrics. First, the SMMART model
effectively integrates small molecule−miRNA associations and
small molecule−disease associations at a system level. Second,
the graph regularization technology in the SMMART model
makes the model achieve better performance.

3.4. Parameter Sensitivity Analysis. In this section, we
investigate the parameter results of SMMART. There are four
regularization parameters in SMMART, i.e., α, γ, δ, and β.
More specifically, α trades off the contribution of the
association relationships, γ adjusts the contribution of the
corresponding prior knowledge, δ trades off the contribution of
the sparse term, and β adjusts the contribution of the topology
characteristics. There is a hyperparameter k from K nearest
neighbor profiles, and the parameter k adjusts the number of
most similar neighbors. In this study, we first analyze the
regularization parameter sensitivity. We fix three of the four
parameters and tune the other one from the candidate set. For
four regularization parameters, first, we tune α from {10−3,
10−2, 10−1, 10−0, 10} by fixing γ = 10, δ = 10, and β = 1. Figure

Figure 3. (a) Recall of six tested methods on small molecule−miRNA association prediction task and (b) G_mean of six tested methods on small
molecule−miRNA association prediction task.

Figure 4. Comparison of SMMART with the other methods based on 90% known associations. (a) ROC and AUC of six methods on small
molecule−miRNA association prediction task and (b) precision/recall curve and AUPRC of six methods on small molecule−miRNA association
prediction task.
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S1a shows the AUC of SMMART by tuning α, and the best
result can be obtained when α = 0.01. Then, we fix α = 0.01, δ
= 10, and β = 1 to tune γ from {1, 5, 10, 15, 20}. Figure S1b
indicates the AUC of our method by tuning γ, and we can
acquire the highest AUC values 0.8582 when γ = 5. Next, we
tune δ from {5, 10, 50, 100, 150} by fixing α = 0.01, γ = 5, and
β = 1 in the same way. The results of tuning δ are shown in
Figure S1c, and we can get the highest AUC score when δ =
100. Finally, we fix α = 0.01, γ = 5, and δ = 100 to tune β from
{0.1, 0.5, 1, 5, 10}, and the highest AUC value is 0.8588 when
β = 5, which is shown in Figure S1d. The best regularization
parameter combination we can obtain is α = 0.01, γ = 5, δ =
100, and β = 5. Based on the best combination of
regularization parameters, we analyzed the k value in K nearest
neighbor profiles. As shown in Figure S1e, when k ≤ 3, the
AUC shows a rising trend as the value of k increases, probably
because of the introduction of the node neighbor information.
When k > 3, the AUC value decreases slowly, probably because
some noise information is introduced, which has a negative
impact on the result. When k = 1, it does not consider the
result of the K nearest neighbor. Although the effect is not very
large, the prediction of the associations between new miRNAs
has a greater impact.
3.5. Robustness Analysis. To analyze the performance of

the SMMART model on different sparse data sets, the different
proportions (90, 80, 70, 60, and 50%) of the training sets are
used to experiment separately. As the variance of the data set
can be quite high, we repeat the process 10 times and report
the averaged AUC, AUPRC, recall, specificity, G_mean, and
precision. Figure 4 shows the performance of SMMART and
other methods by using 90% association data as the training
set. As shown in Figure 4a, the AUC of the six methods is
0.8507, 0.7692, 0.8316, 0.8106, 0.7193, and 0.7681,
respectively, which indicates that the SMMART model obtains
the best result. The precision/recall curve of the six methods
are shown in Figure 4b, and the SMMART model again
achieves better performance. At the same time, we compare the
recall, specificity, G_mean, and precision of the six methods
within top k. As shown in Table S3, the recall of SMMART can

reach 0.8474 in the top 30%, which is 0.12, 0.02, 0.04, 0.15,
and 0.12 higher than the other five methods, respectively. The
specificity, G_mean, and precision are also significantly higher
than those of the other five methods. Figures S2−S5 and
Tables S4−S7 show the performance of our model and other
models when setting 80, 70, 60, and 50% as the training sets.
Regardless of the proportion of the training set, SMMART
always shows better performance. This result shows that
SMMART is more capable of responding to changes in the
data set and is more robust. There may be two main reasons
for the SMMART model to show better performance even
under unfamiliar sparse data sets: (1) a large heterogeneous
information network containing three types of nodes is used to
integrate multisource data, which provides a data basis for the
good robustness of the model and (2) the graph regularization
technology fully considers each type of data and provides
technical support for the good robustness of the model.

3.6. Importance of KNNP. To overcome the character-
istics of the sparseness of the association data and consider the
association prediction of isolated points, the original adjacency
matrices are processed by the K-nearest neighbor profiles
(KNNPs). Figure S6 shows a comparison of pre- and non-
pretreatment models, and the non-pretreatment model is
called SMMART*. In Figure S6a,b, the recall and G mean are
utilized as evaluation indicators to evaluate the prediction
results of small molecule−miRNA associations. As shown in
Figure S6a, recall of SMMART is 76% for the top 20%
predicted candidates, significantly outperforming that of
SMMART*(74%). Figure S6b shows that G_mean of
SMMART is 77% for the top 15% predicted associations,
also significantly outperforming that of SMMART*(75%).

3.7. Importance of Various Similarities. To illustrate
that multiknowledge used to construct a similarity matrix is
good for improving the performance, we used experiments to
confirm the necessity of fusing each similarity data. In
experiments, we removed the clinical similarity of small
molecules (named SMMART_noCli), the chemical structure
similarity of small molecules (named SMMART_noChe), the
functional similarity of small molecules (named SMMART_-

Figure 5. Performance comparison between SMMART and variant models. (a) AUC of SMMART and variant models. (b) Recall of SMMART
and variant models within top 5−30%.
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noFun), and the sequence similarity of small molecules
(named SMMART_noSeq). Then, these four variant models
are compared with the SMMART model, and the experimental
results are shown in Figure 5. As shown in Figure 5a,b, on
removing any similarity data, the performance of the model
degrades. It is worth noting that the AUC and recall of the
model SMMART_noCli are higher than those of the model
SMMART_noChe, and those of the model SMMART_noFun
are higher than those of the model SMMART_noSeq. These
results show that the structure information of small molecules
is a more important contribution to improve the performance
of the model than clinical information. In a similar way, the
sequence information of miRNAs is more helpful in improving
the performance of the model than functional information.
3.8. Identification of Small Molecule−Disease Asso-

ciations. This study takes into account the topological
information in heterogeneous networks to discover unknown
associations between small molecule and miRNA by
correlating predictive small molecule−miRNA associations
with small molecule−disease associations at a system level. The
comparative experiments in Section 3.3 show that the
SMMART model has great advantages in predicting the
small molecule−miRNA associations. At the same time, we
analyze the accuracy of the SMMART model in predicting
small molecule−disease associations. The experimental results
are shown in Tables S8 and S9. In addition to predicting the
small molecule−miRNA associations, predicting the associa-
tions between small molecules and diseases also uses a 5-fold
cross-validation. The experimental result is that the AUC value
is 0.9422, and the top 20% recall reaches 98.99%. The detailed
results are shown in Table S8. Table S9 is a literature search to
verify the results of the 10 most relevant diseases predicted by
the small molecule drug 5-fluorouracil (5-FU) (CID 3385) and
glucose (CID 5793) through the SMMART model. For 5-
fluorouracil, 8 of the 10 pairs with the highest correlation
scores are validated. As for glucose, there are also six kinds of
proven pairs. This shows that SMMART can also obtain good
results in predicting the relationships between small molecule
drugs and diseases, which is another advantage of the
SMMART model.
3.9. Case Studies. To further analyze the prediction

performance of SMMART, a case study is conducted for three
types of small molecules, which include 5-fluorouracil
(CD3385), glucose (CID 5793), and ginsenoside Rh2 (CID

119307). These three small molecules are most closely related
to human life and health. 5-Fluorouracil plays a key role in the
treatment of colon cancer. Meanwhile, 5-FU has serious
cardiac toxicity that is displayed as cardiogenic shock,
ventricular fibrillation, and myocardial infarction.60 Glucose
is essential for life, and a severe drop in blood glucose level can
rapidly lead to coma and death.61 Hexahydro-1,3,5-trinitro-
1,3,5-triazine (RDX) has been classified as a class C potential
human carcinogen by the U.S. Environmental Protection
Agency.62 We verify the predicted small molecule−miRNA
associations by finding the literature in Pubmed. In this
section, all of the known small molecule−miRNA associations
are used to predict the associations. After being processed by
the SMMART model, the association score of unknown small
molecule−miRNA associations can be obtained. We take 15
miRNAs with the highest scores associated with the three small
molecules and looked up the relationship pairs verified in the
literature. The results are shown in Table 2, and 10, 7, and 6 of
15 candidate miRNAs are verified to be associated with 5-
fluorouracil, glucose, and ginsenoside Rh2 by other literature.
Taking small molecule drug 5-fluorouracil as an example, the
literature63 describes that the potential of mir-29c as a novel
prognostic, treatment-predictive marker and diagnostic in
ESCC and its therapeutic implication and mechanisms in
overcoming 5-fluorouracil chemoresistance are explored. This
expression indicates a resistance relationship between mir-29c
and 5-FU. Similarly, the literature64 describes that 5-
fluorouracil and pirarubicin treatment can significantly induce
the expression levels of miR-205 and miR-221, which fully
explains the direct association between 5-fluorouracil and miR-
221. Overall, the results of the case study further illustrate the
accuracy of the SMMART model for predicting the association
of small molecules with miRNAs.

4. CONCLUSIONS

In this study, we have developed a framework with graph
regularization techniques that captures inter- and intrarelation-
ships among small molecules, miRNAs, and diseases, aiming to
infer unknown small molecule−miRNA associations. We first
consider the sparseness of the association data, and the KNNP
method is used to preprocess the associated data. On this basis,
due to the existence of diverse information in heterogeneous
networks, SMMART integrates prior knowledge, association
information, and topological characteristics into the model

Table 2. Top 15 Potential miRNA Candidates Discovered by SMMART for the Three Selected Small Molecules

rank SM miRNA evidence SM miRNA evidence SM miRNA evidence

1 CD3385 mir-30b 25 526 515 CID 5793 mir-487a unconfirmed CID 119307 mir-27a 30 159 408
2 CD3385 let-7i unconfirmed CID 5793 mir-500a unconfirmed CID 119307 let-7g unconfirmed
3 CD3385 mir-20b 23 617 628 CID 5793 mir-331 22 908 221 CID 119307 mir-181d unconfirmed
4 CD3385 let-7c 25 951 903 CID 5793 mir-22 28 314 781 CID 119307 mir-195 22 893 786
5 CD3385 mir-449a unconfirmed CID 5793 mir-192 29 717 107 CID 119307 mir-497 30 108 441
6 CD3385 mir-98 25 526 515 CID 5793 mir-555 unconfirmed CID 119307 let-7b unconfirmed
7 CD3385 mir-320b unconfirmed CID 5793 mir-302d unconfirmed CID 119307 mir-196a unconfirmed
8 CD3385 mir-107 26 636 340 CID 5793 mir-526a unconfirmed CID 119307 mir-744 30 159 408
9 CD3385 mir-29c 31 037 126 CID 5793 mir-518e 29 193 463 CID 119307 mir-383 24 555 688
10 CD3385 mir-200a 28 496 200 CID 5793 mir-520c unconfirmed CID 119307 mir-660 unconfirmed
11 CD3385 mir-455 unconfirmed CID 5793 mir-520d 29 322 778 CID 119307 mir-202 30 809 600
12 CD3385 mir-133b 28 881 788 CID 5793 mir-103a 30 864 677 CID 119307 mir-505 unconfirmed
13 CD3385 mir-221 25 544 773 CID 5793 mir-557 unconfirmed CID 119307 mir-33a unconfirmed
14 CD3385 mir-26a 29 719 405 CID 5793 mir-26a 25 961 460 CID 119307 mir-335 unconfirmed
15 CD3385 mir-503 unconfirmed CID 5793 mir-520h unconfirmed CID 119307 mir-433 unconfirmed
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through graph regularization techniques. Finally, we have
validated the performance of SMMART through 5-fold cross-
validation, robustness analysis, and case studies. Experimental
results have shown that our model obtained great performance
in inferring potential small molecule−miRNA associations.
We acknowledge that there are some limitations of

SMMART under the current graph regularization technique-
based prediction framework. First, the selection of an optimal
parameter combination is a nontrivial work, and the model
optimization process is complicated. Second, it is considered
by assembling experimentally reported, large-scale data from
publicly available databases in an overall framework. If the
associations between small molecules and miRNAs can be
predicted for specific cancer cell lines, better results may be
achieved. Third, although the SMMART model has fused
diverse information, the information is mainly network
topology information. If more biological feature data
(including more pharmacological information and published
literature data, etc.) can be integrated, it may be of great help
in improving the accuracy of the model. In future studies,
incorporating and collecting more relevant complex network
information through effective fusion methods (e.g., network
embedding) from more literature and the databases may
improve prediction performance. In addition, we will consider
more forms of similarity calculation methods, including
sequence alignment and Hamming distance of mature miRNAs
and chemical structure similarity of small molecules.
Furthermore, we may choose a better method to combine
multiple similarities of small molecules and miRNAs in future
work, which may be more helpful for improving the
performance of the model.
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