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Abstract-Small molecule(SM) drugs can affect the expression of miRNAs, which plays crucial roles in many important biological
processes. The chemical structure and clinical information of small molecule can simultaneously incorporate information such as
anatomical distribution, therapeutic effects and structural characteristics. It is necessary to develop a novel model that incorporates
small molecule chemical structure and clinical information to reveal the unknown small molecule-miRNA associations. In this
study, we developed a new framework based on non-negative matrix factorization, called SMANMF, to discover the potential small
molecules-miRNAs associations. First, the functional similarity of two miRNAs can be obtained by computing the overlap of the
target gene sets in which the miRNAs interact together, and we integrated two types of small molecule similarities, including chemical
similarity and clinical similarity. Then, we utilized a non-negative matrix factorization model to discover the unknown relationship
between small molecules and miRNAs. The evaluation results indicate that our model can achieve superior prediction performance
compared with previous approaches in 5-fold cross-validation. At the same time, the results of case studies also reveal that the
SMANMF model has good predictive performance for predicting the potential association between small molecules and miRNAs.

Index Terms—Small molecule-associated miRNAs prediction, clinical similarity, chemical similarity, Non-negative Matrix
Factorization.

I. INTRODUCTION

RECENT studies have indicated that miRNAs are im-
portant regulatory molecule in many crucial biological

processes [1]. Improvements in miRNA characterization and
functional analysis techniques not only reveal their role in var-
ious cellular processes, but also reveal the unusual expression
patterns of miRNAs in various diseases[2][3]. Several studies
have revealed the multiple roles of miRNAs in a variety of
important biological processes[4][5]. In recent years, relevant
studies centering on miRNA, such as functional similarity
calculation of miRNA[6], prediction of relationship between
miRNA and target[7], prediction of associations between miR-
NAs and diseases[8][9][10], motif discovery in co-regulatory
network[11] and module identify[12][13], have become im-
portant research directions in bioinformatics[14]. The above
studies to some extent indicated the importance of miRNAs
in biological processes.

Small molecule drugs are a class of complex organ-
ic compounds, about 1 nanometer in size, which can
help regulate biological processes in molecular biology and
pharmacology[15]. For a long time, people have studied the
function of small molecules from small molecule targeted
therapeutic proteins[16], but only 10-15% of these small
molecule targeting proteins are directly related to disease[17].
Among all the proteins associated with the disease, many are
lack of motifs that can bind directly to small molecules[17].
Therefore, from the perspective of human gene expression
proteins to design small molecule drugs that account for only
a small proportion[18]. However, assumed that the design of
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small molecule drugs can be studied from small molecules
acting on non-coding RNAs, the research scope of small
molecule drugs will be broadened[19].

At present, high-throughput screening methods for small
molecule-miRNA modifications have been extensively stud-
ied, which provide a novel direction for miRNA-targeted
treatment[20]. Small molecules can indirectly reduce or in-
crease the expression of miRNA by binding to transcription
factors or altering the miRNA promoter region[21]. Small
molecules can also bind to RNA endonucleases to disrupt
miRNA maturation[22]. In conclusion, it is important to study
the associations between small molecules and miRNAs for the
treatment of diseases and the clinical application of known
drugs[20][21]. However, since most biological processes in
living organisms are especially complex, it is a long-term,
complicated and time-consuming work to determine the re-
lationship of small molecules with miRNAs through experi-
ments. Therefore, it is urgent to present novel calculational
framework for discovering the unknown relationship between
small molecules and miRNAs by known data and associations.

Recently, some methods have been developed to calcu-
late the associations between small molecules and miRNAs.
For instance, feature-based models are the primary types
of calculational models. Wang et al.[23] developed a new
calculational framework to discover unknown relationship be-
tween small molecules and miRNAs by computing functional
similarity, which also revealed the associations of drugs and
diseases based on integrating known relationship between
small molecules and miRNAs by validated disease related
miRNAs. Wang et al.[24] presented a new computational
model for small molecule-miRNA correlation prediction (RF-
SMMA) based on random forests. Salma et al.[25] constructed
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a prediction model for mining small RNA-binding molecules
form macromolecular data sets based on Random Forest and
Naive Bayes. Feature-based methods can achieve good results
on most data sets, but there is still not a clear definition
in terms of effective feature extraction and prediction model
selection.

In contrast, network-based models are another type of
predictive model used to calculate the associations of small
molecules and miRNAs. Lv et al.[26] proposed a new com-
putational framework to comprehensively reveal the unknown
relationship between small molecules and miRNAs by utilizing
Random Walk with Restart algorithm on the bipartite network.
Li et al.[27] established a network-based miRNA pharmacoge-
nomics model based on the inference (SMiR NBI) framework
for predicting small molecule-miRNA networks to reveal the
potential mechanisms of miRNA-mediated responses of anti-
cancer drug. Qu et al.[28] constructed predicting calculation
model(HSSMMA) of small molecules with miRNAs based
on HeteSim inference by implementing path-based HeteSim
measurement methods on heterogeneous networks. Meng et
al.[29] developed a systematic computational model to build
an association network of bioactive small molecules with
miRNAs in Alzheimers disease(AD), in which the function-
al and topological analysis of the small molecules-miRNA
in Alzheimers disease from multiple perspectives were per-
formed. Guan et al.[30] proposed a small molecule-miRNA
correlation prediction model(GISMMA) based on meta-pattern
interaction. Yin et al.[31] developed a computational model of
heterogeneous graph inference and sparse learning for small
molecule-miRNA association prediction. Qu et al.[32] predict-
ed potential small molecule-miRNA association based triple
layer heterogeneous network. Wang et al.[33] developed a
computational framework (CLDISMMA) for predicting small
molecule-miRNA associations based on cross-layer depen-
dency inference on multilayered networks. The experiments
results show that CLDISMMA obtained great performance.
In order to improve the accuracy, Zhao et al.[34] presented a
novel model (SNMFSMMA), which used symmetric nonnega-
tive matrix factorization to discover potential small molecule-
associate miRNAs. Network-based models can avoid some
short-comings that there are difficulties about effective feature
extraction and prediction model selection in feature-based
models, but there are still difficulties in how to effectively
fuse multi-source information. In simple terms, regardless of
the network-based calculation models or the feature-based
calculation models, which often use the single small molecule
similarity or simply weight a variety of similarity, which does
not effectively utilize the chemical and clinical information
of small molecules. However, the clinical similarity of small
molecules is calculated by ATC codes can simultaneously
incorporate information such as anatomical distribution, ther-
apeutic effects and structural characteristics. Meanwhile, the
chemical similarity of small molecules computed by MACCS
fingerprints of each small molecule can fully consider chem-
ical structure information of small molecules. Thus these
small molecule similarity calculations incorporate a variety of
pharmacological information, which plays an important role
in drug-target prediction and drug combination research.

In this study, we develop a novel computational frame-
work (SMANMF) to reveal the relationships between small
molecules and miRNAs. SMANMF fully exploits the clin-
ical information and chemical information between smal-
l molecules, the small molecule-miRNA network, and the
similarities for miRNAs based on experimentally validated
miRNAs-genes associations. Accumulated studies have found
that matrix factorization technique is used in many areas,
such as recommendation systems [35], microRNA-disease
association prediction [14][36][37], long noncoding RNA-
disease association prediction[38][39], and synergistic drug
combinations[40], etc. Inspired by above, we integrate known
small molecules similarity, miRNAs similarity, and associ-
ations between small molecules and miRNAs as a matrix
factorization model, which uses two types of small molecule
similarities and one type of miRNA similarity as graph regular-
izations, and the L2 paradigm is added to prevent overfitting.
Finally, we use a 5-fold cross-validation to compare with the
previous method. In order to verify the robustness of the
model, we remove the association of 10%, 20%, 30% and
40% of known small molecules with miRNAs, respectively.
We also design experiments to demonstrate the importance
of multi-drug information. Finally, case studies are used to
demonstrate the performance of this model in discovering the
potential association of small molecules with miRNAs.

II. MATERIALS AND METHODS

A. Methods Overview

The computational model SMANMF, could discover the
potential associations of small molecules with miRNAs, which
can be divided into three parts. Firstly, we compute the simi-
larities of small molecules based on the chemical and clinical
information, and the similarities of miRNAs based on miRNA-
gene associations. Meanwhile, we construct the interaction
network between small molecules and miRNA. Secondly, in
order to reveal the potential relationship of small molecules
with miRNAs, the framework of non-negative matrix factoriza-
tion is applied to discover the unknown associations. Finally,
we use the results of nonnegative matrix factorization to
predict the association between small molecules and miRNAs.
The overall process is shown in Fig.1, where the notations and
explanations are in Table 1.

TABLE I
NOTATIONS AND EXPLANATIONS

Notation Explanation
d Small molecule
m miRNA
Nd The count of small molecules
Nm The count of miRNAs
k Sub-space dimensionality
Sc ∈ RNd×Nd Chemical similarity of small molecules
Sa ∈ RNd×Nd Clinical similarity of small molecules
Sm ∈ RNm×Nm The similarity of miRNAs
Y ∈ RNd×Nm Adjacency matrix
A ∈ RNd×k Representation matrix of small molecule
B ∈ RNm×k Representation matrix of miRNA
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Fig. 1. Overall framework of SMANMF for predicting unknown associations between small molecules and miRNAs.

B. Construction of Small Molecule-miRNA Network

1) Small Molecule Pairs Similarity
Chemical similarity The DrugBank database[41] provides

chemical structure and the Open Babel[42] is a valid program-
ming library that has been effectively applied in computing
MACCS fingerprints of each small molecule. Assumed that
the counts of bits of small molecule di and mj are a and b,
respectively, while c is the bits set in the fingerprints of both
small molecules, the chemical similarity of a small molecule-
small molecule pair is represented as:

Sc =
c

a+ b− c
(1)

The chemical similarities are often applied to drug
discovery[43] and drug combinations[44] providing a value
between 0 and 1.

Clinical similarity The ATC coding systems[45] have been
effectively applied in calculating the drug-drug similarities.
The DrugBank database[41] provides the ATC codes for the
drugs. We could define the ATC code similarity Sl(di, dj)
between drugs di and dj in l-th level based on the ATC codes
as follows:

Sl(di, dj) =

∣∣dli ∩ dlj∣∣∣∣dli ∪ dlj∣∣ (2)

where dli and dlj represent total ATC codes of drugs di and
dj at the l-th level respectively. If both drugs di and dj do

not have ATC codes, then their similarity is 0. We calculate
the clinical similarity of drugs di with dj based on the ATC
code similarity Sl(di, dj) as follows:

Sa(di, dj) =

∑l
k=1 S

l(di, dj)

n
(3)

where l represents the count of layers of the ATC codes
(ranging from 1 to 3). The first three layers of the ATC code
represent anatomic classification, therapeutic classification,
and pharmacological classification, which cover most of the
information of the ATC code[46]. Therefore, we use the first
three layers of the ATC code to calculate the clinical similarity
of small molecules, which is commonly used to facilitate the
calculation of the small molecular drugs similarity[47]. There
are multiple ATC codes in many drugs. For example, caffeine
(a central nervous stimulant) has three different ATC codes:
V04CG30, R03DA20, N06BC01. We compute the ATC code
similarity for each ATC code in each layer while the drug
has multiple ATC codes, then obtain the clinical similarity by
taking the average of ATC code similarity in each layer that
are used in[48].

2) MiRNA Similarity Measure
In this study, we measure the similarity based on shared

genes and download the miRNA-gene association from
miRTarBase[49] database. Meanwhile, we use the GSFS
method[50] to compute the similarity of the miRNAs mi with
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mj by calculating the overlap of their miRNA target gene sets.
The miRNA similarity Sm(mi,mj) of miRNAs mi and mj

is introduced based on the target gene sets as follows:

Sm(mi,mj) =
|Genei ∩Genej |
|Genei ∪Genej |

(4)

where sets of genes associated with miRNA mi and mj are
represented as Genei and Genej , respectively. The count of
sets is represented as |·|. Assuming that miRNAs mi and mj

do not have a synergistic gene, then their similarity is 0.
3) The Associations of Small Molecules with MiRNAs
The bipartite association network involving in smal-

l molecules and miRNAs is constructed by the known relation-
ship between small molecules and miRNAs, and the known
small molecule-associated miRNAs from SM2miR[51]. The
edge sets are constructed by the matrix Y = [yij ] ∈ RNd×Nm ,
where yij indicates the association between the i-th small
molecule and the j-th miRNA. The value of yij is 1 if small
molecule di is connected with miRNA mj and 0,otherwise.

C. The Prediction Model of Small Molecule-miRNA Associ-
ation

1) Standard NMF
Non-negative matrix factorization (NMF) is a significant

method which can be effectively applied to the data represen-
tation [52][53]. Its aims to obtain a better problem analysis
and presentation by decomposing the original matrix into two
non-negative matrices. Let matrix Y ∈ RNd×Nm represent
the relationship between small molecules and miRNAs, it is
known by NMF that the matrix Y can be represented by the
multiplication of two matrices, for instance, Y ≈ ABT ,
which needs to meet A ∈ RNd×k and B ∈ RNm×k(k �
min(Nd, Nm)). The objective function is mathematically for-
mulated for the problem of miRNA-related small molecules
prediction as follows:

minA,B

∣∣∣∣Y −ABT
∣∣∣∣2
F

s.t. A ≥ 0, B ≥ 0 (5)

where ||·||F is the Frobenius norm of a matrix. The iterative
algorithm of literature[54] can minimize the above objective
function.

2) SMANMF
The standard NMF in formula (5) fails to incorporate topo-

logical information and molecular structure information in the
data space, it only performs the learning in the Euclidean space
[55][56]. To prevent overfitting and fully consider the chemical
and clinical information of small molecule, and significantly
improve the learning performance, a new objective function is
presented by incorporating both graph Laplacian regularization
items and Tikhonov (L2) into the NMF for discovering the
associations between small molecules and miRNAs. We ensure
the smoothness of A and B by the Tikhonov regularization [57]
and fully exploit the topological information and molecular
structure information by the graph regularization[58]. The
objective function of SMANMF can be calculated as follows:

minA,B

∣∣∣∣Y −ABT
∣∣∣∣2
F

+ α(||A||2F + ||B||2F )

+ γaTr(A
TLaA) + γcTr(A

TLcA)

+ γmTr(B
TLmB) s.t. A ≥ 0, B ≥ 0

(6)

where α, γa, γc and γm represent the regularization parameter-
s, Tr (.) is the trace of a matrix, La = Da−Sa, Lc = Dc−Sc

and Lm = Dm − Sm represent the graph Laplacian matrices
of Sa, Sc and Sm, respectively. Sa and Sc represent the small
molecules chemical similarity matrices and clinical similarity
matrices, Sm is the miRNAs similarity matrices. Da, Dc and
Dm are the diagonal matrices and the values on the diagonal
are rows(or columns) sums of Sa, Sc and Sm, respectively.

3) Optimization
To obtain the minimum of formula (6), let Φ = [ϕik]

and Ψ = [ψjk] represent the Lagrange multipliers[59] and
meet the constrains aik ≥ 0 and bjk ≥ 0, respectively.
The corresponding optimization function Lf of formula (6)
is written as follows:

Lf =Tr(Y Y T )− 2Tr(Y BAT ) + Tr(ABTBAT )

+ αTr(AAT ) + αTr(BBT ) + γaTr(A
TLaA)

+ γcTr(A
TLcA) + γmTr(B

TLmB)

+ Tr(ΦAT ) + Tr(ΨBT )

(7)

The partial derivatives of A and B can be calculated as:

∂Lf

∂A
= −2Y B + 2ABTB + 2αA+ 2γaLaA+ 2γcLcA+ Φ

(8)
∂Lf

∂B
= −2Y TA+ 2BATA+ 2αB + 2γmLmB + Ψ (9)

The Karush−Kuhn−Tucker(KKT) condition[60] ϕikaik =
0 and ψjkbjk = 0 is applied into the following equations for
aik and bik:

− (Y B)ikaik + (ABTB)ikaik + (αA)ikaik

+ [γa(Da − Sa)A]ikaik + [γc(Dc − Sc)A]ikaik = 0
(10)

− (Y TA)jkbjk + (BATA)jkbjk + (αB)jkbjk

+ [γm(Dm − Sm)B]jkbjk = 0
(11)

The updating rules could be simplified as follows based on
above equation:

aik ← aik
(Y B + γcS

cA+γaS
aA)ik

(ABTB + αA+ γaDaA+ γcDcA)ik
(12)

bjk ← bjk
(Y TA+ γmS

mB)jk
(BATA+ αB + γmDmB)jk

(13)

updating the formula (12) and formula (13) until the nonneg-
ative matrices A and B converges.

The predicted score matrix of small molecule-miRNA asso-
ciations can be obtained based on Y ∗ = ABT , then we rank
the correlation scores of small molecules and miRNAs in Y ∗.
In theory, the higher the ranking, the greater the likelihood
that the corresponding small molecule and miRNA are associ-
ated. Therefore, we can use the obtained correlation score to
evaluate the predicted result by conducting experiments.
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III. RESULTS

A. Data Description

We obtained 5112 known connections between small
molecules and miRNAs from SM2miR[51]. For one thing,
as done in previous studies[61][62], we merged different
small molecule-miRNA copies that produce the same mature
miRNA. For another, after the removel of duplicate asso-
ciations, 251 small molecules and 901 miRNAs collected
from SM2miR, 4182 associations between small molecules
and miRNAs were obtained for calculation of this model. To
compute the similarity of miRNAs, we collected the miRNA-
gene associations from miRTarBase [49] database, including
196565 associations of 22697 genes and 706 miRNAs are
retained. In SMANMF, the similarity of small molecules
includes chemical similarity and clinical similarity, for the
chemical similarity, 9296 SMs and their chemical structure
information are acquired from the DrugBank[41], for the
chemical similarity, we acquired 2247 SMs and their ATC
codes from the DrugBank[41]. To facilitate the calculation,
we finally obtained 251 SMs and 901 miRNAs based on the
small molecule-miRNA database in SM2miR[51]. The details
of multi-type data are shown in Table 2.

TABLE II
THE DETAILS OF MULTI-TYPE DATA

data type database description

small molecule-miRNA
associations SM2miR[51] 251 small molecules, 901 miRNAs

and 4182 associations
small molecule clinical

similarity Drugbank[41] 83 small molecules and their
ATC codes

small molecule chemical
similarity Drugbank[41] 251 small molecules and their

chemical structure
miRNA functional

similarity miRTarbase[49] 706 miRNAs, 22697 genes and
196565 associations

B. Experimental Evaluations and Discussions

1) Experimental Settings and Evaluation Metrics
To comparatively study SMANMF effect in predicting small

molecule-miRNA associations, we use 5-fold cross-validation
(CV) based on known relationship between small molecules
and miRNAs. All known associations of small molecules with
miRNAs are divided into 5 equal subsets randomly; four
of them are used as training sets and the remaining one
is used as a test sample. In this study, the parameters are
estimated based on CV experiments. We use grid search for all
parameter combinations. The mainly combinations come from
the following values: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
for k and {100, 10−1, 10−2, 10−3} for α. Subsequently, we
choose the three parameters from {100, 10−1, 10−2, 10−3} for
γm, γa and γc.

The Receiver Operating Characteristic (ROC) curve[63] is
effectively applied in studying the generalization performance
of learners. The ROC curve can be obtained by taking dif-
ferent thresholds for the TPRs and FPRs. TPR and FPR are
introduced as follows:

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
(14)

where TP and TN represent true positives and true negatives,
and the false negatives and false positives are represented as
FN and FP, respectively. The area under the ROC curve (AUC)
is effectively utilized to evaluate overall prediction effect.

Assumed that the known (positive samples) and unknown
associations (negative samples) between small molecule and
miRNA are serious imbalance, the recall is more effective[64],
and defined as:

Recall =
TP

TP + FN
(15)

In order to evaluate the performance of the model from
multiple perspectives and consider the sparsity of known small
molecule and miRNA associations, we use specificity and
G mean as evaluation indicators as follows:

Specificity =
TN

TN + FP
(16)

G mean =

√
TP

TP + FN
· TN

TN + FP
(17)

The recall indicates the completeness of the correct clas-
sification of the positive samples. The specificity indicates
the completeness of the negative classification of the negative
samples. G mean also pays attention to the performance of
the two categories, indicating the equilibrium value of the
classification accuracy of the positive and negative categories.

2) Baseline Methods
We compare SMANMF with some previous models, in-

cluding the computational model based on random forest
for predicting small molecule-miRNA associations[24], the
methods based on random walk with restart[26] and network-
based identification model[27], to identify the superiority of
the developed SMANMF. The data of SMANMF is applied
to the comparison model to obtain the comparison experiment
results.

RFSMMA[24] was a calculation approach based on ran-
dom forest for predicting the associations of small molecules
with miRNAs (RFSMMA). The numbers of estimators, max-
features and min samples leaf were set to 100, 0.2, and 10
respectively according to the original literature[24].

RWR[26] was a computational framework to comprehen-
sively discover associations between small molecules and
miRNAs based on Random Walk with Restart algorithm
(RWR). The parameters of RWR were set as γ = 0.7, λ = 0.5
and η = 0.5 according to the literature [26].

SMiR NBI[27] was constructed by network-based infer-
ence(NBI) method to discover the underlying mechanisms
of anticancer drug responses mediated by miRNAs. SMiR-
NBI model displayed high performance in cross-validation and
experimental validation in several case studies.

C. Performance Evaluation

As shown in Fig.2, the SMANMF framework was superior
compared with RWR, RFSMMA and SMiR NBI. As we
expected, among all of the 4182 known associations, the AUC
values of SMANMF, RWR, RFSMMA and SMiR NBI are
0.8429, 0.8045, 0.7902 and 0.7518 in Fig.2(a), respectively.
The experiment results shows that SMANMF achieve the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 26,2020 at 07:16:02 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2020.2975780, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 receiver operating characteristic(ROC)

FPR

T
P

R

SMANMF(AUC=0.8429)
RWR(AUC=0.8045)
RFSMMA(AUC=0.7902)
SMiR_NBI(AUC=0.7518)

(a)

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

 ROC within top10%

FPR

T
P

R

SMANMF
RWR
RFSMMA
SMiR_NBI

(b)

Fig. 2. Comparison performance of SMANMF with the previous methods. (a) ROC curves of SMANMF with the previous methods. (b) ROC curves of SMANMF with the
previous methods within top 10%.

highest performance among all methods. Fig.2 (b) shows the
ROC curve of top 10% to better study the top ranking of the
prediction results of small molecules and miRNAs associa-
tions. The top 10% ROC curve of SMANMF is located at the
top of the other three comparison methods, indicating that the
SMANMF method also has better performance in predicting
the relationship between small molecules and miRNA in the
top 10% results.

We also use compared indicators recall, specificity and
G mean within top 5%, 10%, 15%, 20% and 25% to verify
the model’s performance. As shown in Table 3, SMANMF
was 12% higher on recall than the second best method RWR,
and SMANMF had a greater advantage in specificity than
the comparison method. We compared the SMANMF with
the previous method on the G mean indicator for balancing
the recall and specificity. The result shows that the G mean
values of SMANMF reach 0.6654, 0.7483, 0.7715, 0.7885 and
0.7827, from top 5% to top 25% respectively. SMANMF’s
G mean values are on average 10% higher than the second
best method, indicating the superiority of SMANMF in dis-
covering the potential associations between small molecules
and miRNAs. Whether AUC, recall, specificity or G mean
as evaluation indicators, SMANMF model has achieved good
performance. The reason of obtaining great result may be that
the two types of similarities of small molecules are considered
in SMANMF model, and the non-negative matrix factorization
model is great for processing multi-source data.

D. Importance of Various Drug Information
In order to fully illustrate the need to consider multiple

drug information, we designed three variant models based
on SMANMF as follows: 1) SMANMFnoac: SMANMFnoac
model did not consider the chemical similarity and clinical
similarity of small molecules simultaneously, only the similari-
ty of miRNAs was used as regularization item. 2) SMANMFc:
SMANMFc model only considered the chemical similarity of

TABLE III
THE AVERAGE RECALL, SPECIFICITY AND G MEAN ACROSS ALL TESTED

SMALL MOLECULE BASED ON THE DATA OF HAVING REMOVED 10%
KNOWN ASSOCIATIONS AT DIFFERENT TOP K CUTOFFS

method Ranking threshold

top 5% top 10% top 15% top 20% top 25%

Recall

SMANMF 0.4653 0.6208 0.6986 0.7751 0.8146
RFSMMA 0.2526 0.4227 0.5522 0.6562 0.7294
RWR 0.3368 0.5132 0.6045 0.6744 0.7237
SMiR NBI 0.2340 0.3603 0.4677 0.5722 0.6605

specificity

SMANMF 0.9516 0.9020 0.8521 0.8022 0.7521
RFSMMA 0.9508 0.9012 0.8515 0.8017 0.7518
RWR 0.9511 0.9016 0.8517 0.8018 0.7518
SMiR NBI 0.9507 0.9010 0.8512 0.8014 0.7515

G mean

SMANMF 0.6654 0.7483 0.7715 0.7885 0.7827
RFSMMA 0.4899 0.6171 0.6856 0.7253 0.7405
RWR 0.5659 0.6800 0.7174 0.7352 0.7375
SMiR NBI 0.4715 0.5697 0.6309 0.6771 0.7045

small molecule and ignored the clinical similarity. 3) SMAN-
MFa: SMANMFa model only considered the clinical similarity
of small molecule and ignored the chemical similarity.

We set the parameters of variant models the same as those
of our proposed model SMANMF. In order to more fairly
evaluate the performance of SMANMF and SMANMFnoac,
SMANMFc, SMANMFa, we used ROC curve and AUC
scores for comparison. The results of the three models are
shown in Fig.3. We used AUC as the performance evaluation
index, the AUC values of SMANMF, SMANMFa, SMANMFc
and SMANMFnoac are 0.8429, 0.8015, 0.8023 and 0.5435
respectively. The performance of SMANMF model is better
than SMANMFa, SMANMFc and SMANMFnoac. As shown
by the above experimental results, the SMANMF took full
account into the chemical similarity and clinical similarity
of small molecules at the same time, while predicting the
relationship between small molecules and miRNAs. It may be
on account of the limitations of only considering the chemical
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Fig. 3. The ROC curve with the performance comparison between the
SMANMF and the variant model.

structure similarity or clinical similarity, and the properties of
small molecules could not be fully utilized.

E. Robustness Analysis

Since there were many false positives in the calculation
methods of existing small molecule miRNA relationship pre-
diction, the error tolerance of the model played an important
role in the relationship prediction. Therefore, we compared the
robustness of SMANMF model with the previous methods to
verify the error tolerance.
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Fig. 4. the ROC after removed 10% known associations, (a) the full ROC of SMANMF
and previous methods, (b) the top 10% ROC of the SMANMF and previous methods.

We randomly removed 10%, 20%, 30%, and 40% of
known small molecule and miRNA associations. 5-fold cross-
validation was performed on the processed data, then repeated
ten times and took the average as results. In order to en-
sure the fairness of the experiment, the parameters of the
SMANMF and the comparison method were all unchanged.
The AUC, recall, specificity and G mean were still selected
as verification indicators. The results of removing the 10%
association were shown in Fig.4 and Table 4. The results of
removing 20%, 30%, and 40% were shown in the supplemental
material. In Fig.4, after removed 10% of the known small
molecule-miRNA associations, the SMANMF’s AUC value

can still reach 0.8419 and is 5.5% higher than the AUC
value of the second good model RWR of 0.7983. In terms of
indicators such as recall, specificity and G mean, SMANMF
also indicates better performance in Table 4. Supplementary
materials Fig.1 and Table 1 show the performance comparison
after removing 20% of known associations. The AUC value of
SMANMF is 0.8391, which is still higher than the comparison
method and showed good results in the recall, specificity and
G mean. Fig.2 and Table 2, Fig.3 and Table 3 of the supple-
mentary materials show the performance comparison of the
30% and 40% known associations removed, respectively. Even
if the 40% known relationship was removed, the AUC value
of the SMANMF model can still reach 0.8326. SMANMF’s
recall, specificity and G mean values in top 25% are 0.7657,
0.7527 and 0.7591, respectively. Compared with the previous
method, it still demonstrates better performance. The good
robustness of the SMANMF model may be the result of the
fusion of similarities of multiple small molecules. Because
we fuse multiple small molecule similarities can reduce the
impact of known small molecule-miRNA association data on
the model.

TABLE IV
THE AVERAGE RECALL, SPECIFICITY AND G MEAN ACROSS ALL TESTED

SMALL MOLECULE BASED ON THE DATA WHICH IS REMOVED 10% KNOWN
ASSOCIATIONS AT DIFFERENT TOP K CUTOFFS

method Ranking threshold

top 5% top 10% top 15% top 20% top 25%

Recall

SMANMF 0.3904 0.5415 0.6569 0.7412 0.7979
RFSMMA 0.2311 0.4029 0.5316 0.6441 0.7260
RWR 0.326 0.5016 0.5979 0.6585 0.6995
SMiR NBI 0.2298 0.3548 0.4803 0.5779 0.6625

specificity

SMANMF 0.9512 0.9016 0.8519 0.8021 0.7522
RFSMMA 0.9507 0.9012 0.8515 0.8018 0.7520
RWR 0.9510 0.9015 0.8517 0.8019 0.7519
SMiR NBI 0.9507 0.9010 0.8513 0.8016 0.7518

G mean

SMANMF 0.6094 0.6986 0.7481 0.7710 0.7747
RFSMMA 0.4686 0.6025 0.6728 0.7186 0.7389
RWR 0.5568 0.6723 0.7136 0.7266 0.7251
SMiR NBI 0.4673 0.5654 0.6394 0.6805 0.7057

F. Parameter Sensitivity Analysis
In this section, we evaluated the scalability and how pa-

rameters influenced the performance. Especially, we evaluated
the effect of the embedding dimension k. For brevity, we
reported the results of AUC scores based on the datasets in
section 3.1. Noted that except for the parameter being tested,
we set all other parameters to default values. We have shown
how the dimension of embedding dimensions k affects the
performance in Fig.5. Since higher embedding dimensions can
embody more information, the performance raises firstly while
the number of embedding dimension increases. Then after the
dimension k exceeds 70, the performance to drop slowly. The
reason may be that SMANMF needs a suitable dimension to
encode the information and larger dimension may introduce
additional redundancies.

G. Case Studies
Case studies further confirmed the superiority of the SMAN-

MF model in predicting the potential associations between
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TABLE V
THE TOP 15 POTENTIAL MIRNA CANDIDATES DISCOVERED BY SMANMF FOR THE THREE SELECTED SMALL MOLECULES

Rank SM miRNA evidence SM miRNA evidence SM miRNA evidence

1 CID3385 mir-451 28670496 CID 5793 mir-451 25937278 CID 8490 mir-203 unconfirmed
2 CID3385 mir-92 29849934 CID 5793 mir-151 unconfirmed CID 8490 mir-92 unconfirmed
3 CID3385 mir-320 28255248 CID 5793 mir-92 unconfirmed CID 8490 mir-663 25616258
4 CID3385 mir-103 unconfirmed CID 5793 mir-320 22900199 CID 8490 mir-190 24672518
5 CID3385 mir-181a 29795190 CID 5793 mir-103 29511499 CID 8490 mir-365 unconfirmed
6 CID3385 mir-99b 25356050 CID 5793 mir-663 unconfirmed CID 8490 mir-21 19270793
7 CID3385 mir-125b 28670496 CID 5793 mir-191 unconfirmed CID 8490 mir-487b unconfirmed
8 CID3385 mir-335 unconfirmed CID 5793 mir-365 unconfirmed CID 8490 mir-155 unconfirmed
9 CID3385 mir-487b unconfirmed CID 5793 mir-181a 29207650 CID 8490 mir-17 unconfirmed
10 CID3385 mir-22 29042944 CID 5793 mir-21 29207650 CID 8490 mir-31 unconfirmed
11 CID3385 mir-26a 29719405 CID 5793 mir-99b unconfirmed CID 8490 mir-133a 25616258
12 CID3385 mir-181b unconfirmed CID 5793 mir-125b 26966351 CID 8490 mir-10a 19270793
13 CID3385 mir-126 27203443 CID 5793 mir-27b 28698281 CID 8490 mir-324 unconfirmed
14 CID3385 mir-107 26636340 CID 5793 mir-24 unconfirmed CID 8490 mir-34c unconfirmed
15 CID3385 mir-151 unconfirmed CID 5793 mir-335 29122960 CID 8490 mir-638 25616258
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Fig. 5. Analysis of parameter sensitivity.

small molecules and miRNAs. In this part, all of the known
associations were used to predict model, and the unknown
association as validating. In case study, all the parameters
involved were set as optimal parameters. For each small
molecule, the top miRNA associated with the corresponding
small molecule is obtained by predicting the score.

To further evaluate the prediction results of SMANMF,
case studies were conducted based on three common small
molecules, namely, 5-Fluorouracil(CID 3385), Glucose(CID
5793), and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)(CID
8490). These three small molecules are the most closely
related to human life and health. 5-Fluorouracil play key role
in treatment of treatment of colon cancer. Meanwhile, 5-FU
has serious cardiac toxicity that manifested as cardiogenic
shock, ventricular fibrillation and myocardial infarction[65].
Glucose is essential for life and a severe drop in the blood
levels rapidly leads to coma and death[66]. RDX has been
classified as a class C potential human carcinogen by the U.S.
Environmental Protection Agency[67]. We verify the predicted
small molecule-miRNA associations by finding literatures in
Pubmed. Table 5 provided potential candidate miRNAs that
may be associated with three small molecules.

As shown above, we selected 15 miRNAs where the fact
that 10, 8, and 6 of them were associated with 5-Fluorouracil,
Glucose and RDX respectively was verified. Taking the small
molecule 5-Fluorouracil as an example, the mir-92 associated
with it was verified in the literature[68]. The experiments in
the literature showed that transfection of mir-92a significantly
blocked the expression of caspase-3 and PARP 5-Fu-induced
apoptosis. Above discovery indicated that these miRNAs were
associated with small molecules. Fig.6 showed that in the

association network, in which is the predicted candidates
miRNA in the top 20 for the three small molecules, some of
the top-ranked candidate miRNAs were associated with one
or more small molecules. In general, the prediction results
further verified that the availability of SMANMF in revealing
unknown associations of small molecule with miRNA.
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Fig. 6. The predicted candidate miRNAs top 20 for the three small molecules.

IV. CONCLUSIONS

Recently, some researches have focused on discovering
potential associations of small molecules and miRNAs by
computational models. In this paper, we developed a novel
framework based on non-negative matrix factorization, called
SMANMF, to verify the potential relationship between small
molecules and miRNAs. We calculated the two types of small
molecules similarity and the miRNA similarities. Meanwhile,
SMANMF could also obtain the inter-relationship of small
molecules with miRNAs. Moreover, the two types of small
molecules similarity were considered at the same time to
enhance inference on the associations of small molecules with
miRNAs. The estimated association scores of small molecules
with miRNAs can be obtained based on an iterative algorithm,
and we ranked the candidate miRNAs by these scores for
each of the small molecule. The experiment results indicated
that SMANMF consistently performed better than the previous
methods. Case studies on three small molecules demonstrated
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the SMANMFs superior performance in discovering the po-
tential miRNA indications. The reasons of obtaining superior
performance include: First, the Non-negative Matrix Factoriza-
tion model fully combines the similarity of small molecules
and similarity of miRNAs, which is of great help to improve
the results; Second, we consider two types of similarity of
small molecules at the same time which can improve the
performance and robustness of the model by fusing of more
valuable data. Meanwhile, a new calculation model has been
developed to predict the associations of small molecules and
miRNA, which also can be reused to approximate prediction
problems (e.g. small molecule-target, small molecule-disease,
miRNA-disease and miRNA-target).

The evaluation result of SMANMF showed that we devel-
oped model can effectively enhance the effect compared with
several state-of-the-art models. However, there were still some
shortcomings that need to be improved. First, binding sequence
information (such as miRNA sequence information) may
contribute to the improvement of experimental performance,
which is the point to be considered in this paper. Second,
considering the specificity of miRNA expression in specific
cancer cell lines, it may be more accurate to discover the
potential associations between small molecules and miRNAs,
which may be our next stage of work.
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