
Systems biology

IDDkin: network-based influence deep diffusion model

for enhancing prediction of kinase inhibitors

Cong Shen 1, Jiawei Luo1,*, Wenjue Ouyang1, Pingjian Ding2 and Xiangtao Chen1

1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China and 2Division of Biomedical

Informatics, University of South China, Hengyang 421001, China

*To whom correspondence should be addressed. luojiawei@hnu.edu.cn

Associate Editor: Alfonso Valencia

Received on July 9, 2020; revised on November 9, 2020; editorial decision on December 6, 2020; accepted on December 10, 2020

Abstract

Motivation: Protein kinases have been the focus of drug discovery research for many years because they play a
causal role in many human diseases. Understanding the binding profile of kinase inhibitors is a prerequisite for drug
discovery, and traditional methods of predicting kinase inhibitors are time-consuming and inefficient. Calculation-
based predictive methods provide a relatively low-cost and high-efficiency approach to the rapid development and
effective understanding of the binding profile of kinase inhibitors. Particularly, the continuous improvement of net-
work pharmacology methods provides unprecedented opportunities for drug discovery, network-based computa-
tional methods could be employed to aggregate the effective information from heterogeneous sources, which have
become a new way for predicting the binding profile of kinase inhibitors.

Results: In this study, we proposed a network-based influence deep diffusion model, named IDDkin, for enhancing
the prediction of kinase inhibitors. IDDkin uses deep graph convolutional networks, graph attention networks and
adaptive weighting methods to diffuse the effective information of heterogeneous networks. The updated kinase
and compound representations are used to predict potential compound-kinase pairs. The experimental results show
that the performance of IDDkin is superior to the comparison methods, including the state-of-the-art kinase inhibitor
prediction method and the classic model widely used in relationship prediction. In experiments conducted to verify
its generalizability and in case studies, the IDDkin model also shows excellent performance. All of these results dem-
onstrate the powerful predictive ability of the IDDkin model in the field of kinase inhibitors.

Availability and implementation: Source code and data can be downloaded from https://github.com/CS-BIO/IDDkin.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The perturbation of protein kinase-mediated cellular signalling path-
ways causes a number of diseases, including inflammation, cancer
and diabetes (Manning, 2002; Noble et al., 2004). Accumulated
studies have shown that kinases can be potential targets of drugs for
the treatment of various types of human diseases because of their im-
portant roles in many cellular activities (Noble et al., 2004). As of
June 2020, 61 kinase inhibitors have been approved by the US Food
and Drug Administration, and many kinase inhibitors are currently
in preclinical and clinical development (Roskoski, 2020).
Meanwhile, 518 kinases are included in the human kinome,
accounting for �1.7% of all human genes. However, only a small
number of human kinases (�80) have been identified as targets for
drugs, and there are many kinase inhibitor drugs that target the
same kinases (Fabbro et al., 2015). Approximately 25% of the kin-
ases have completely unknown functions, and nearly half of the

kinases are largely uncharacterized (Bhullar et al., 2018). Thus, a
large number of untargeted kinase-related diseases need further
research.

Due to the conservation of the ATP binding site, the majority of
kinase inhibitors have low selectivity, and this can cause adverse
side effects (Metz et al., 2011). Therefore, a detailed study of kinase
inhibitor-target interactions is important for understanding their
molecular modes of action and provides an opportunity to identify
new starting points for other therapeutically interesting kinases
(Janssen et al., 2019). Utilizing wet experiments to study the binding
profile of kinase inhibitors is still the predominant approach, but
even for large-scale pharmaceutical companies, filtering large
amounts of compounds in this way is extremely slow and costly
(Dickson and Gagnon, 2004; Merget et al., 2017). To accelerate re-
search on the binding profile of kinase inhibitors, it is urgent to de-
velop new methods to compensate for the shortcomings of
traditional methods.

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5481

Bioinformatics, 36(22-23), 2020, 5481–5491

doi: 10.1093/bioinformatics/btaa1058

Advance Access Publication Date: 26 December 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/22-23/5481/6050789 by S. R
ajarantnam

 School of International Studies user on 15 January 2022

http://orcid.org/0000-0001-8505-6406
https://github.com/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1058#supplementary-data
https://academic.oup.com/


Recent advances in computation-based drug discovery methods
have enabled the discovery of the potential interactions of thousands
of compounds against a range of targets (Merget et al., 2017).
Inspired by this, a large number of in silico modelling methods for
discovering kinase inhibitory activity have been proposed. Unlike
traditional drug design computational methods (including classical
QSAR methods and free energy calculation tools), machine
learning-based methods, including random forest (RF) (Bora et al.,
2016; Cao et al., 2013; Merget et al., 2017), k-nearest neighbours
(KNN) (Schurer and Muskal, 2013), naı̈ve Bayesian (NB) (Niijima
et al., 2012), deep neural network (DNN) (Li et al., 2019;
Manallack et al., 2002) and support vector machine (SVM)
(Yabuuchi et al., 2011), have significant advantages in predicting
the biological activity of a large number of kinase inhibitors. In gen-
eral, these methods are trained on separate datasets related to a spe-
cific task and they have achieved good results. For example, Cao
et al. (2013) developed a random forest (RF) method to measure the
differentiation of the quantitative binding affinities of kinase-
inhibitor pairs. The innovation of Cao’s model was that the author
proposed a method to represent protein kinases by their amino acid
sequences, and the effectiveness of the method was demonstrated
through experiments. Niijima et al. (2012) proposed a deconvolu-
tion approach by constructing dual-component support vector
machines (DCSVMs) and dual-component naı̈ve Bayes (DCNB) to
dissect kinase profiling data, and this approach enables both the ex-
traction of residue-fragment pairs that are associated with activity
and activity prediction of given compounds on a kinome-wide scale.
Yabuuchi et al. (2011) utilized the machine learning methods of
multiple CPIs, which were mainly SVM models, to demonstrate
novel lead compounds for the protein kinases and G-protein coupled
receptors. Recently, Li et al. (2019) presented a multitask deep neur-
al network (MTDNN) method to predict kinase inhibitory activity
for large-scale compound data, and the feasibility of this method
was demonstrated by various experiments. A prediction model
based on the traditional machine learning method accelerates the
prediction process of the biological activity of potential kinase inhib-
itors and makes up for the deficiencies of the traditional wet experi-
mental methods. However, the superiority of machine learning
methods depends heavily on the selection of effective features, which
may introduce limitations into machine learning methods. Most of
these methods take the structural features of inhibitors (compounds)
as their input and use machine learning methods as classifiers to out-
put the classification results. The prediction models that only con-
sider the structural features and association relationships of
compounds may have limitations in their accuracy and generaliza-
tion ability for predicting kinase inhibitors. Simultaneously, the
emergence of large-scale, biologically heterogeneous networks has
provided unprecedented opportunities for many research fields in
drug discovery. Thus, it may be feasible to enhance the prediction of
kinase inhibitors from the perspective of heterogeneous networks.

Accumulated studies have shown that network-based
approaches could accelerate drug discovery and help us quantify the
relationships between multiple entities (Barabasi and Oltvai, 2004;
Cheng et al., 2019). Meanwhile, the emergence of a large number of
novel graph mining methods has made rapid progress in the fields of
drug-target prediction (Luo et al., 2017; Nguyen et al., 2019; Shen
et al., 2020a,b), drug repositioning (Cheng et al., 2018; Xuan et al.,
2019) and drug combinations (Cheng et al., 2019; Ding et al.,
2019). In recent years, a series of methods involving graph neural
networks (GNNs) has achieved excellent results in effectively fusing
network information. Kong and Yu (2020) incorporated the
GEDFN architecture to construct a forest graph-embedded deep
feedforward network (forgeNet) model for feature graph construc-
tion. Pittala and Bailey-Kellogg (2020) proposed a framework that
is a unified deep learning-based model for predicting antigen- and
antibody-binding interfaces. Long et al. (2020) utilized a graph con-
volutional network-based model to predict potential microbe-drug
associations. Tsubaki et al. (2019) combined a convolutional neural
network (CNN) for proteins and a graph neural network (GNN) to
construct a novel CPI prediction approach. Thus, we attempted to
predict the biological activity of kinase inhibitors from the

perspective of graph neural networks, which may aggregate more
heterogeneous network information and improve the performance
of traditional machine learning methods in kinase inhibitor predic-
tion. However, how to utilize the graph neural network method to
extract useful knowledge from the kinase inhibitor heterogeneous
network is the main challenge of the network-based approach.

To overcome these challenges, we proposed a network-based in-
fluence deep diffusion model, named IDDkin, to enhance the predic-
tion of kinase inhibitors. We first constructed a heterogeneous
network by integrating the inhibitor (compound) similarity network
and the compound-kinase pair network. Then, we used the graph
convolution network (GCN) to fuse high-order neighbour informa-
tion into the compound similarity network. Meanwhile, the graph
attention network (GAT) and adaptive weighting were utilized to
diffuse the compound-kinase pair information to the kinase nodes
and compound nodes. Finally, the process of homogeneous fusion
and heterogeneous diffusion was iterated in the heterogeneous net-
works to obtain deeper, more effective information. The evaluation
results demonstrated that IDDkin obtains better results than many
state-of-the-art methods in a 5-fold cross-validation. Moreover, the
case studies further illuminated IDDkin’s strong power for predict-
ing novel kinase inhibitors.

2 Materials and methods

2.1 Framework overview
The overall architecture of IDDkin is illustrated in Figure 1. IDDkin
contains a graph convolution network that takes the compound
similarity network as its input, a graph attention network that incor-
porates the effective information of known compound-kinase pairs
for kinase representation, and an adaptive weighting model that
aggregates the network knowledge of known kinase-compound
pairs to update the compounds. These three parts of the IDDkin
model synergistically affect the prediction performance of the
model. The representation of compounds learned by the graph con-
volution network provides the initial input at the graph attention
network level. The feature incorporation at the graph attention net-
work level and the adaptive weighting level ensures the representa-
tion vectors of the compounds and kinases contain valid
information for known associations.

2.2 Construction of the heterogeneous network and

feature engineering
In this study, the heterogeneous networks consisted of a network of
compound similarities and a network of kinase-compound pairs.
First, we downloaded compound-target associations from the
BindingDB database (Gilson et al., 2016) to construct the compound
similarity network and used the Tanimoto coefficient to calculate
the similarity of the compounds. Then, we collected the kinase-
compound pairs from the Tang set (Tang et al., 2014) and the PKIS
set (Elkins et al., 2016; Knapp et al., 2013). Each kinase was divided
into the inactive (negative) or active (positive) class through the
pIC50 cut-off set at 6.3 (corresponding to 500 nM). Meanwhile, the
similarity network was filtered according to the Tang set and PKIS
set. Finally, the heterogeneous network based on the Tang set con-
tained 188 kinases, 1351 compounds and 15660 data points.
Similarly, the heterogeneous network constructed based on the PKIS
set contained 195 kinases, 366 compounds and 2414 data points.
The chemical structure (SMILES format) of a compound contains a
large amount of physicochemical property information, and it is
often used to represent the chemical structure of the compound for
drug discovery-related tasks, including molecular generation (Moret
et al., 2020; Zang and Wang, 2020), compound structure feature ex-
traction (Shen et al., 2020a,b), and compound similarity calculation
(Ding et al., 2020; Luo et al., 2020a,b). Therefore, for the structural
features of the compounds, we assembled the chemical structure in-
formation (SMILES format) from the Tang set and the PKIS set.
RDKit (http://www.rdkit.org/) was used to compute the MACCS
fingerprints for all of the compounds. An array with a length of
166 bits was obtained to denote each compound.
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2.3 IDDkin model
2.3.1 Problem formulation

IDDkin predicts potential kinase-compound pairs from a heteroge-
neous network, which contains compounds, kinases, compound
similarities and known kinase-compound pairs. Let G ¼ (V, E, F)
denote the undirected heterogeneous network, where V is the set of
vertices (compounds and kinases), E is the set of edges (compound
similarities and kinase-compound pairs), and F is the set of node
embeddings. Thus, there are two sets of entities: compound set
A ðA ¼ NAÞ and kinase set B ðB ¼ NBÞ. Furthermore, the com-
pound similarity matrix can be represented as S 2 R

NA�NA . Let Y 2
R

NA�NB represent the association matrix of the NA known inhibitors
against a panel of NB kinase assays, Yij ¼ 1 if compound Ai is tested
against kinase Bj at an activity threshold of pIC50¼6.3; otherwise,
it equals 0. In addition, each compound is associated with real-
valued attributes (e.g. compound structure features), represented as
p in the compound structure feature matrix P 2 R

NA�d, where
d¼166 is the dimension of the compound structure feature. To cap-
ture the network topology information, let Q 2 R

NB�L denote the
free embedding of the kinases, where L represents the dimension of
the free embedding. Given the random initial values of the free
embedding, IDDkin updates the stability through optimization oper-
ations, which can capture the collaborative latent representation of
the compounds and kinases (Wu et al., 2019).

2.3.2 Homogeneous fusion layer

In recent decades, accumulated studies (Bleakley and Yamanishi,
2009; Luo et al., 2017) have found that similarity-based calculation
methods have achieved good performance for computational drug-
target interaction (DTI) prediction. A common assumption of these
methods is the ‘guilt-by-association’, that is, similar drugs may share
similar targets and vice versa. Inspired by these methods for DTI
prediction, we applied the assumption based on ‘guilt-by associ-
ation’ to the task of kinase inhibitor prediction. Thus, we have con-
structed a compound similarity network and look forward to
making full use of the effective information in the compound simi-
larity network.

In a similarity network, similarity information between com-
pounds contains a large amount of topological information, which
can facilitate the representation learning of specific tasks. In particu-
lar, a large amount of effective neighbour information is included in
the most similar neighbours, and the low-similarity neighbours have
little effect on the model (Zhang et al., 2020). First, we use the K-
nearest neighbour of each node to filter its neighbour information as
follows:

S0ij ¼
SN

ij aj 2 NðaiÞ
1 i ¼ j
0 otherwise

8<
: (1)

where NðaiÞ denotes the K-nearest neighbour of ai and SN is row
normalized by S. Then, we develop an information fusion method-
based graph convolutional network(Kipf and Welling, 2017) to ag-
gregate the neighbour information of each compound as follows:

GCN S0; Pð Þ ¼ r �D�
1
2� S�D�

1
2PW

� �
(2)

where �S ¼ S0 þ I is the similarity matrix with self-connection for
the compound similarity network, W 2 R

d � d is the weight matrix,
�D is the diagonal degree matrix of �S and rð�Þ denotes the activa-
tion function. To aggregate the multihop neighbour information, a
deep graph convolutional network is used in the IDDkin model:

Plþ1 ¼ GCNl S
0
; Pl

� �
(3)

GCNl S0; Pl
� �

¼ r ~D
1
2 ~S ~D

�1
2PlWl

� �
(4)

where l represents the number of layers in the deep graph convolu-
tional network.

The whole process of the deep graph convolutional network cor-
responds to step 2 in Figure 1. Taking compound a as an example,
the dark nodes in the first-order neighbours that need to be aggre-
gated by the graph convolutional network and the nodes with a light
colour are those that are removed from the K-nearest neighbour.
The same screening method is extended to the deep neighbours of
compound a. As the number of layers increases, the noise

Fig. 1. The overall architecture of IDDkin model. Step 1: Construct a heterogeneous information network by combining compound similarity networks and compound-kinase

pair networks. Step 2: Aggregate multi-hop neighbour information in compound similarity network through multi-layer GCN model. Step 3: Calculate the attention score

through the compound’s representation vector and free embedding of kinase. Step 4: Diffuse the influence from the compound node to the representation of the kinase node by

the GAT. Step 5: Diffuse the influence from the kinase node to the representation of the compound node by the adaptive weighting. Step 6: Update all node representations in

the network to enhance prediction of kinase inhibitors. The red dashed lines indicate the newly predicted associations
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information in the aggregated deep neighbours will also increase,
and the performance with different depths is illustrated in the sec-
tion describing the detailed model analysis. Compound features that
incorporate deep neighbour information will be used as input for
the heterogeneous diffusion layer in the next stage.

2.3.3 Heterogeneous diffusion layer

In IDDkin, the effective information of the kinase nodes mainly
comes from network knowledge, especially the association between
kinases and compounds. It is worth noting that the inhibitory inten-
sity of a compound for different kinases is different in compound-
kinase pairs with a known inhibitory effect. Therefore, a method
that can adaptively learn the inhibitory strength of compounds
against kinases is needed to solve this problem.

A graph attention network (Veli�ckovi�c et al., 2018) is applied to
the interaction graph without edge attributes. In recent years, graph
attention networks have also been widely used in bioinformatics
(Du et al., 2020) and drug screening (Wang et al., 2020). Thus, we
used a graph attention network to adaptively learn the inhibitory
strength of the compounds on the kinases in IDDkin. With the learn-
ed compound feature vector Pl þ 1 as input, free embedding of the
kinase is calculated by the neighbour incorporation of the inter-
action graph as follows:

Agg
�

PÞ ¼ r
� X

j2NðiÞ
aijWPl

j

�
(5)

where rð�Þ denotes the non-linear activation function, and NðiÞ rep-
resents the set of compound nodes that interact with kinase node i.
W is the weight matrix, and Pl

j is the jth row of the compound fea-
ture matrix after gathering neighbour information through the
graph convolutional network. It is worth noting that aij is the atten-
tion score between kinase node i and compound node j, which can
be calculated by the following equation:

aij ¼
expðLeakeyReluðaðconcat Qi; WPPj

h i� �
ÞÞÞ

P
n2NðiÞexpðLeakeyReluðaðconcat Qi; WPPj

h i� �
ÞÞÞ

(6)

where concatð:Þ is the concatenation operation and a is a learnable
attention weight vector. WP is the projection matrix of the com-
pound node space. The attention score is calculated as shown in step
3 in Figure 1. Afterward, we connected the compound diffusion
presentation AggðPÞ and free embedding Q as follows:

Qf ¼ sðconcat Q; AggðPÞð Þ �WQÞ (7)

where concatð�Þ represents the concatenate operation and sð�Þ is the
sigmoid function. WQ 2 R

ðd þ LÞ�L is the weight matrix, and Qf is
the representation vector of the kinase after the diffusion of the in-
fluence through the compound nodes. The process of influence dif-
fusion is shown in step 3 in Figure 1.

After the IDDkin model executes the graph convolutional net-
work and graph attention network, the representation vector of the
kinase nodes has simultaneously merged the topology information
in the compound similarity network with the network knowledge in
the compound-kinase interaction network, but the compound repre-
sentation has not yet integrated the network knowledge in the inter-
action network. Meanwhile, kinases are also important neighbours
of compounds. Thus, we will diffuse the representation of the kinase
nodes that combines the information of the similarity network and
the interaction network to the compound nodes. We use adaptive
weighting to achieve this goal as follows:

P0ij ¼ r bi: � ðQf Þ:j
� �

(8)

where b 2 R
NA�NB is the adaptive weight matrix and r �ð Þ is the ReLU

function. We connected the homogeneous fusion compound presen-
tation Pl 2 R

NA�d with the heterogeneous diffusion compound rep-
resentation P2 RNA�L as follows:

Pf ¼ sðconcat Pl;P0
� �

�WPÞ (9)

where WP 2 RðdþLÞ�d is the weight matrix and sð�Þ denotes the sig-
moid function. The matrix Pf 2 R

NA�d is the compound representa-
tion, which aggregates the information of the similarity network
and the interaction network. The process of adaptive weighting is
shown in step 4 in Figure 1.

2.3.4 Deep IDDkin model

In the IDDkin model, we used a graph convolutional network to in-
corporate neighbour information into the compound similarity net-
work for the first time and diffused the influence of compounds that
aggregate neighbour information through the graph attention net-
work to the kinases for the second time. Finally, we made the
updated kinases diffuse influence to the compounds again through
adaptive weighting. We tried to combine the deep graph convolu-
tional network from Section 2.3.2 and the graph attention network
from Section 2.3.3 to synergistically update the representation of the
compounds and kinases. The depth of the deep IDDkin model is
mainly reflected in the deep graph convolution network imple-
mented on the compound similarity network. Information fuses in
the homogeneous network and diffuses in the heterogeneous net-
work from time to time. Therefore, whether it is a compound or a
kinase, its representation after (lþ1)th iterations should be a com-
bination of its own representation and its neighbours’ representa-
tions. The calculation process is expressed as follows:

Plþ1
f ¼ sðconcat Plþ1;b� sðconcat Q; Agg Plþ1ð Þ

� �
�WQÞ

� �
�WPÞ

(10)

Qlþ1
f ¼ sðconcat Q; AggðPlþ1Þ

� �
�WQÞ (11)

Agg Plþ1ð Þ ¼ r
� X

j2NðiÞ
aijWðGCNl S0; Pl

� �
Þj
�

(12)

where sð�Þ and rð�Þ represent the sigmoid function and the ReLU
function, respectively. Pl þ 1

f and Ql þ 1
f denote the (lþ1) layer deep

presentation of compounds and kinases.

2.3.5 Model training

With the defined presentation matrix of the compounds and kinases
in a given heterogeneous network, our idea is that if the two differ-
ent types of nodes are linked, the prediction score should be close to
1; otherwise, it should be 0. Therefore, there are two challenges: (i)
the dimension of the compound’s presentation matrix P and the kin-
ase’s presentation matrix Q are not uniform; and (ii) how to effect-
ively utilize the known compound-kinase pair information in the
model training process. In view of the above challenges, we propose
a loss function for model training as follows:

min
Q; GP ; GQ ;UW ;Taf g

X
i� 1;NA½ �
j� 1;NB½ �

Yij � ðPtþ1Þi:GP � ðGQÞTðQtþ1ÞTj:
���

���
���

���2
F

(13)

where UW ¼ Wl;W;WP;WQ;WP

n o
, Ta ¼ a; a; bf g. GP 2 R

d � p

and GQ 2 R
L � p denote the projection matrix of compound node

space and the kinase node space, respectively. The above loss func-

tion states that after projections of Pl þ 1 and Ql þ 1 by GP and GQ,

respectively, we used the inner product of the two projected vectors
to reconstruct the original edge weight Yij. It is worth noting that
such a reconstruction strategy has been used in the previous litera-
ture (Luo et al., 2017; Natarajan and Dhillon, 2014; Wan et al.,
2019) to solve link prediction problems.

Based on the expression of the loss function, we observed that
the prediction of kinase inhibitors is similar to the problem of matrix
factorization or completion. However, the main difference from
traditional matrix factorization methods (Luo et al., 2017;
Natarajan and Dhillon, 2014; Wan et al., 2019) is that the IDDkin
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model obtains deeper features of compounds and kinases through
fusion and diffusion models. In addition, through the fusion and dif-
fusion steps, IDDkin incorporates the network topology knowledge
and compound structure information into feature matrices Pl and Ql

and utilizes these features to guide the next optimization process.

3 Results

3.1 Datasets
Two datasets, Tang et al., (2014) and PKIS (Elkins et al., 2016;
Knapp et al., 2013), were used to generate the activity prediction
models. The Tang dataset (Tang et al., 2014) was collected from the
kinase profiling datasets of Davis et al. (2011), Anastassiadis et al.
(2011) and Metz et al. (2011). After initial filtering, the Tang data-
set contained 1351 compounds, 188 kinases and a total of 119445
data points in the form of pIC50 values (~50% coverage). By setting
the pIC50 cut-off value to 6.3 (corresponding to 500 nM), the kin-
ases were divided into inactive (negative) and active (positive)
classes. Each kinase was divided into the inactive (negative) or active
(positive) class through the pIC50 cut-off set to 6.3 (corresponding
to 500 nM). Therefore, the data points used to construct a heteroge-
neous network in the Tang dataset changed from 119445 to 15660
(Table 1). PKIS is an abbreviation for Published Kinase Inhibitor Set
(Elkins et al., 2016; Knapp et al., 2013), containing 366 compounds,
195 kinases and a total of 71 369 data points in the form of pIC50

values (100% coverage). Similar to the processing method for the
Tang dataset, the kinases were classified into inactive (negative) and
active (positive) classes with the pIC50 cut-off value set to 6.3 (corre-
sponding to 500 nM). Similarly, only 2414 data points were used to
construct the heterogeneous network for creating the activity predic-
tion models (Table 1).

3.2 Baselines
The proposed IDDkin was compared with the following models:
MTDNN (Li et al., 2019), PEPECFP (Avram et al., 2018), KNN
(Schurer and Muskal, 2013), Naı̈ve Bayes (Schurer and Muskal,
2013) and Merget’s method (Merget et al., 2017). These five com-
parison models use the molecular structure feature of each com-
pound as their input and whether the kinase is associated with the
compound as a constraint to train the model for predicting potential
kinase inhibitors. That is, these prediction models are local predic-
tion models, which may not be sufficient for checking the perform-
ance of the model at the global level. Therefore, to verify the global
performance of the IDDkin model, we added several comparison
methods commonly used for association prediction on complex net-
works in the field of bioinformatics and virtual drug screening:
Random Walk with Restart (RWR) (Lv et al., 2015; Tong et al.,
2006), Non-negative Matrix Factorization (NMF) (Lee and Seung,
1999; 2001) and Katz (Chen et al., 2017; Katz, 1953). All of the
above local comparison methods and global comparison methods
used the data given in Table 1. A detailed introduction and the par-
ameter selection of these comparison methods are shown in the
Supplementary Materials.

3.3 Implementation and evaluation strategy
We evaluated the performance of IDDkin and baselines by perform-
ing 5-fold cross-validation for the prediction of kinase inhibitors. All
known compound-kinase pairs were randomly divided into five
equal sets, four of which were used to train the prediction model,
while the remaining set was used as the test set. In this study, we

used the same implementation of IDDkin for two kinase profiling
datasets. We implemented IDDkin with TensorFlow 1.0 (Abadi
et al., 2016) and used Adam for training with a learning rate of
0.0005. We chose the dimension of kinase free embedding L from
8; 16; 32; 64; 12f g, the dimension p of the projection matrix GP

and GQ from 8; 12; 16; 20; 24f g and the parameter K of the K-
nearest-neighbour from 6; 8; 10; 12; 14f g.

The area under the precision-recall curve (AUPR) and the area
under the receiver operating characteristic curve (AUC) were used to
evaluate the overall performance of IDDkin. To evaluate the per-
formance of the model more comprehensively, we also used bal-
anced accuracy, precision, recall and the F1 score to verify the
performance of the model. The detailed calculation process of these
evaluation metrics is shown in the Supplementary Materials. To re-
duce the bias of cross-validation, we performed the whole process
ten times and took the average value as the final result.

3.4 Comparison with previously reported methods
We carried out a parallel comparison with previously reported
methods to verify the predictive performance and generalizability of
our IDDkin model. In these comparison methods [including
MTDNN (Li et al., 2019), PEPECFP (Avram et al., 2018), KNN
(Schurer and Muskal, 2013), Naı̈ve Bayes (Schurer and Muskal,
2013) and Merget’s method (Merget et al., 2017)], the molecular
structure characteristics of the compound are used as the input, and
whether the compound is related to the kinase is used as a constraint
to train the model. Afterward, we also used 5-fold cross-validation
to test the performance of these models. Unlike the 5-fold cross-
validation at the global level, we randomly divided the compounds
associated with each kinase into five equal parts, four of which are
used for training and the remaining one is used for testing. It is
worth noting that both the IDDkin model and the comparison meth-
ods should be retrained at each fold in the 5-fold cross-validation.
The obvious problem here is that if some kinases are only associated
with a small number of compounds, then these models are prone to
overfitting when predicting potential kinase inhibitors. Inspired by
Merget’s method (Merget et al., 2017), we only consider datasets
with at least 20 bioactivity values per kinase in the Tang set. Since
the data of the PKIS set are small and sparse, we only consider data-
sets with at least 10 bioactivity values per kinase in the PKIS set. We
collected the AUC and AUPR of each kinase in each method to draw
a box plot, as shown in Figure 2 below. In Figure 2A, the average
AUCs of IDDkin in both datasets were greater than 0.9 and higher
than those of the comparison methods. Figure 2B shows the AUPR
of IDDkin and the comparison methods. It is worth noting that the
average AUPR of IDDkin in the PKIS set was close to 0.4, which is
much higher than the comparison methods, indicating the superior
performance of the IDDkin model in the prediction of kinase inhibi-
tors. The above results demonstrate that IDDkin is a feasible model
for predicting kinase inhibitors. Furthermore, to identify whether
the presented differences between the compared models are signifi-
cant, we used a paired t-test via 5-fold cross-validation to compare
the AUCs and AUPRs of IDDkin and the other methods. As shown
in Table 2, the P-values were less than 0.05, indicating that the dif-
ferences between the AUCs and AUPRCs are statistically significant.

Supplementary Figure S1 demonstrates that even though the
number of training bioactivity data points for the kinases is quite
small, IDDkin shows decent performance. On the Tang dataset,
given a kinase with fewer than 25 training data points, the perform-
ance of IDDkin is much better than the comparison methods. The
same conclusion could be reached for the PKIS dataset. In particular,
the AUPR metric of IDDkin is much higher than those of the com-
parison methods. Similarly, IDDkin also shows better performance
than the comparison methods when the number of training data
points of a kinase is large. These results show that the IDDkin model
has good generalizability; that is, regardless of the number of train-
ing data points, this model can always achieve better prediction
performance.

Table 1. Sizes of final datasets used for the prediction of kinase

inhibitors

Compounds Kinases Positive Negative Density

Tang 1351 188 15660 238328 6.17%

PKIS 366 195 2414 68956 3.38%
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3.5 The global predictive performance evaluation of

IDDkin
To verify the global performance of IDDkin in the prediction of kin-
ase inhibitors, The area under the receiver operating characteristic
curve (AUC) and the area under the precision-recall curve (AUPR)
were utilized to verify the overall performance of IDDkin. We found
that IDDkin achieves a higher accuracy in the 5-fold cross-
validation than the state-of-the-art methods (Table 4). In the PKIS
dataset, the AUC value of IDDkin was 0.9433, which is 2.67%
higher than the second-ranked Katz model (AUC¼0.9188)
(Fig. 3A). For another evaluation metric AUPR, the IDDkin model
achieved 0.3582 in the PKIS dataset, which is 72.88% higher than
the second-ranked NMF model (AUPR ¼ 0.2072) (Fig. 3B).
Whether it is on the PKIS dataset or the Tang dataset, the AUPR val-
ues of the IDDkin model and the comparison method are low, which

is caused by the imbalance of the positive and negative samples of
the two datasets. In general, IDDkin performs best among all meth-
ods both on the PKIS dataset and the Tang dataset. These results in-
dicate that the IDDkin model has excellent global prediction
capability. Furthermore, the AUCs and AUPRs of IDDkin and the
comparison methods with different runs were compared using
paired t-tests (two-tailed tests) via 5-fold cross-validation. As shown
in Table 3, the P-values were less than 0.05, suggesting that the dif-
ferences between AUCs and AUPRs are statistically significant.

The number of correctly predicted true positives reflects the dis-
criminability of a prediction model to distinguish true positives, es-
pecially when the number of negative samples is much larger than
the number of positive samples(Zeng et al., 2019). Therefore, we
added four additional evaluation metrics, recall, precision, F1 score
and balanced accuracy, to verify the performance of the various
methods. As shown in Table 4, both on the Tang dataset and the
PKIS dataset, the prediction accuracy of IDDkin is higher than those
of the comparison methods. It is worth noting that the prediction
performance improvement of IDDkin on the Tang set is more sig-
nificant than that of the PKIS set. For example, compared with the
Katz model on the Tang set, the performance of IDDkin in terms of
recall, precision, F1 score and balanced accuracy were improved by
0.0411, 0.0093, 0.017 and 0.0011, respectively. However, com-
pared with the Katz model on the PKIS set, the performance of

Fig. 2. Performance comparison between IDDkin and other comparison methods. (A) Comparison of the performance of IDDkin model and comparison methods with AUC as

evaluation metric in Tang set and PKIS set. (B) Comparison of the performance of IDDkin model and comparison methods with AUPR as evaluation metric in Tang set and

PKIS set

Table 2. P-values obtained through paired t-test of the AUCs and AUPRCs of IDDkin and other comparative methods

MTDNN PFPECFP KNN Naı̈ve Bayes Merget’s method

Tang AUCs 4.30E-4 1.08E-33 1.82E-41 3.50E-35 1.36E-26

AUPRs 5.75E-20 6.27E-08 3.24E-10 2.80E-10 1.81E-08

PKIS AUCs 1.44E-15 4.12E-11 3.36E-26 8.49E-31 4.67E-14

AUPRs 3.38E-41 3.13E-11 2.85E-18 4.96E-20 3.2E-14

Fig. 3. Performance of different methods on the constructed compound-kinase net-

work. (A) Receiver operating characteristic (ROC) curves of IDDkin and compari-

son methods using PKIS set and Tang set with 5-fold cross-validation. (B) Precision–

recall (PR) curves of IDDkin and comparison methods using PKIS set and Tang set

with 5-fold cross-validation

Table 3. P-values obtained through paired t-test of the AUCs and

AUPRCs of IDDkin and other compared methods for 10 runs

Tang PKIS

Katz NMF RWR Katz NMF RWR

AUCs 3.25E-09 1.7E-08 1E-11 9.86E-05 4.95E-06 4.13E-07

AUPRs 3.48E-08 1.52E-04 2.11E-09 3.55E-12 5.19E-09 2.72e-12
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IDDkin in terms of recall, precision, F1 score and balanced accuracy
were only improved by 0.0244, 0.0081, 0.0154 and 0.0003, respect-
ively. Judging from the comparison between the IDDkin and Katz
models on four verification metrics, the performance of IDDkin on
the PKIS set has been more significantly improved than the perform-
ance of IDDkin. This conclusion not only appears in the comparison
with Katz but also in comparison with the other two models. In fact,
the size of the Tang dataset is larger than that of the PKIS dataset,
and its number of data points is 6.5 times that of the PKIS set.
Therefore, we infer that the IDDkin model may have more signifi-
cant performance improvements on large datasets. As more kinases
are discovered, IDDkin may have a greater performance improve-
ment in predicting kinase inhibitors in the future. There are maybe
two main reasons for the high accuracy of the IDDkin model: (i)
The heterogeneous network comprised of compounds and kinases
integrates multiple sources of information, including compound
similarity information and kinase-compound association informa-
tion; and (ii) The three methods of graph convolutional network,
graph attention mechanism and adaptive weighting fully mine the
heterogeneous network information and improve the performance
of the model.

3.6 Detailed model analysis
We analysed the depth l of the influence deep diffusion model, also
known as the number of layers of GCN used to aggregate informa-
tion. Table 5 shows the results of IDDkin with different layers.
When the number of layers is 1, the GCN of the IDDkin model only
fuses the information of the first-order neighbours, and its perform-
ance is not very high. As can be observed from this table, when we
leverage the layerwise fusion process from layer ¼ 1 to layer ¼ 2,
the performance increases quickly for both datasets. For the Tang
and PKIS sets, when the number of GCN fusion layers is 2, the
IDDkin model achieves the best performance. As the number of
layers increases to 3, the performance of IDDkin begins to drop.
This trend of performance degradation becomes more obvious as
the number of layers increases. Since the influence between the com-
pounds decreases while the distance between each compound and
the neighbour increases, setting the number of layers to 2 is suffi-
cient to predict the kinase inhibitors. In fact, there is a similar con-
clusion when applying deep GCN in the recommendation system,
and the number of layers is generally set to 2 or 3 (Kipf and Welling,
2017; Ying et al., 2018).

We also present a sensitivity analysis for other parameters in
IDDkin, including the dimension L of kinase free embedding, the di-
mension p of the projection matrix and the parameter K of K-nearest
neighbour. In Supplementary Figure S2(A), the AUC and AUPR of
IDDkin gradually increase when embedding dimension L increases
from 8 to 32. Generally, a reference value L¼32 gives optimal
results. As L continues to increase, the accuracy of the IDDkin
model decreases, which may be due to excessive dimensionality that
easily introduces noise. The features of the compound and the
embedding of the kinase are projected into the space of dimension p
through the projection matrix for reconstructing the original associ-
ation matrix. As shown in Supplementary Figure S2(B), the dimen-
sion p could affect the performance of IDDkin. It is inappropriate
for the dimension of the projection matrix to be too large or too
small. Too small may lose effective information, and too large may
easily contain noisy data. Typically, a balanced choice such as
p¼12 is desirable. Supplementary Figure S2(C) shows the impact of
the K-nearest-neighbour parameter K. It can be seen from
Supplementary Figure S2C that IDDkin can achieve the best results
when K¼10. The values of each inflection point in Supplementary
Figure S2(A)–(C) are listed in Supplementary Tables S1–S3.

We present some quantitative convergence analysis results to
verify that the objective function of our IDDkin is non-increasing. In
this study, the universal applicability of our method was evaluated
through two datasets (i.e. the PKIS set and the Tang set) and three
metrics (i.e. the loss, AUC and AUPR) as examples. As shown in
Supplementary Figure S3(A), the training loss quickly drops within
the first 1000 epochs and gradually begins to converge in �1500
epochs. Supplementary Figure S3(B) and (C) show the changes in
AUC and AUPR with the number of IDDkin model iterations. We
can draw the same conclusion from Supplementary Figure S3, that
is, the three metrics on the test data also begin to converge in �1500
epochs. It is worth noting that as the number of iterations increases,
the performance of the model tends to decline, which may be due to
the slight overfitting of the model. In summary, the loss between
consecutive feature representation matrices is non-increasing, and
our IDDkin model converges very fast.

3.7 Performance of IDDkin by ablation study
To investigate how the deep GCN, GAT and adaptive weighting im-
prove the performance of the proposed model, the following var-
iants of IDDkin were conducted for the ablation study:

IDDkin-GCN is a variant model that removes the Deep GCN in
IDDkin and directly uses the original feature vector of the com-
pounds as their representation. The information diffused to the kin-
ase at the GAT stage is only the original structural feature
information of each compound, which does not contain its neigh-
bouring information.

IDDkin-GAT replaces the GAT in IDDkin with adaptive weight-
ing to verify the importance of the GAT part to the model.

IDDkin-AW directly removes the adaptive weighting part, that
is, the final compound representation vector does not contain
compound-kinase pair association information.

Table 6 shows the performance of IDDkin with different variant
models. As seen from this figure, the overall performance will be
reduced to varying degrees when removing or replacing some im-
portant components in the IDDkin model. From the perspective of
the three variant models, the performance of the IDDkin-GAT
model has the smallest overall decrease. However, this does not

Table 5. Metrics of IDDkin with different numbers of layers

Layers AUC AUPR Balanced

accuracy

Recall Precision F1-

score

Tang 1 0.9118 0.2551 0.7018 0.9065 0.0472 0.0897

2 0.9139 0.2793 0.7052 0.9085 0.0482 0.0915

3 0.9092 0.2662 0.7046 0.9039 0.0474 0.0901

4 0.9073 0.2875 0.7025 0.9021 0.0481 0.0913

PKIS 1 0.9297 0.3129 0.7126 0.9267 0.0301 0.0583

2 0.9433 0.3582 0.7214 0.9403 0.0314 0.0607

3 0.9371 0.3542 0.7147 0.9341 0.0312 0.0604

4 0.9315 0.3476 0.7192 0.9285 0.0309 0.0598

Table 4. The performance comparison of IDDkin and other models using multiple evaluation metrics on two datasets

Tang PKIS

Recall Precision F1-score Balanced accuracy Recall Precision F1-score Balanced accuracy

IDDkin 0.9085 0.0482 0.0915 0.7052 0.9403 0.0314 0.0608 0.7214

Katz 0.8674 0.0389 0.0745 0.6831 0.9159 0.0233 0.0454 0.7098

NMF 0.8610 0.0414 0.0790 0.6795 0.9108 0.0269 0.0523 0.7066

RWR 0.8248 0.0308 0.0594 0.6645 0.9061 0.0216 0.0422 0.7047
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mean that the compound-kinase association information is not im-
portant for the performance improvement of the model because we
still consider the association information in IDDkin-GAT and only

use adaptive weighting instead. The performance changes of
IDDkin-AW can also reflect the importance of related information

for the IDDkin model. Especially in the Tang dataset, the AUC value
of the IDDkin-AW model decreases by 8.71%, and the AUPR value
decreases by 14.84%. Since the IDDkin-AW model removes the

adaptive weighting part, the representation vector of the compound
does not contain related information. Therefore, the performance of
the IDDkin-AW model is seriously degraded, which fully illustrates

the importance of the related information in the compound-kinase
pair for improvement of the model performance. The deep GCN

also has an important impact on the performance of IDDkin. The
AUPR value of the IDDkin-GCN model on the Tang set and the
PKIS set decreases by 30.76% and 22.56% compared to the IDDkin

model. This shows that deep GCN is also the key to improving the
performance of the IDDkin model. Therefore, each part of IDDkin,

including GCN, GAT and adaptive weighting, is very important for
the prediction of kinase inhibitors.

3.8 Generalization ability of IDDkin
To further demonstrate the actual potential for predicting kinase
inhibitors of IDDkin, we performed an additional experiment based

on the new test data. In the Tang and PKIS sets, kinases are divided
into the inactive (negative) or active (positive) class with the pIC50

cut-off set to 6.0. We used the data points with a pIC50 cut-off be-
tween 6.0 and 6.3 as the test set and the remaining active data points
as the training set. To reduce the data bias of the overall process, we

repeated it 10 times and obtained the average performance. As
shown in Supplementary Figure S4, IDDkin shows better accuracy

than state-of-the-art methods on the PKIS set and Tang set.
Furthermore, the AUCs and AUPRs of IDDkin and the comparison
methods with 10 runs were compared using paired t-tests (two-

tailed tests). As shown in Supplementary Figure S4, IDDkin (AUC ¼
0.8860; AUPR¼0.2615) shows better accuracy than the state-of-
the-art methods (Katz: AUC ¼ 0.8793, AUPR ¼ 0.1341; NMF:

AUC ¼ 0.8720, AUPR ¼ 0.2351; RWR: AUC ¼ 0.8545, AUPR ¼
0.0929) on the PKIS set, and there are similar conclusions for the

Tang set. Furthermore, the AUCs and AUPRs of IDDkin and the
comparison methods with 10 runs were compared using paired t-
tests. As shown in Supplementary Table S4, the P-values were less

than 0.05, suggesting that the differences between AUCs and AUPRs
are statistically significant. In addition, four additional evaluation

metrics (recall, precision, F1 score and balanced accuracy) were
employed to verify the superiority of IDDkin. As shown in
Supplementary Table S5, for both the Tang dataset and the PKIS

dataset, the prediction accuracy of IDDkin is higher than that of the
comparison methods. For example, the recall of the IDDkin model

on the Tang set is 0.7845, which is 1.73%, 3.37% and 8.22%
higher than those of the Katz, NMF and RWR methods, respective-
ly. The IDDkin model also has obvious advantages in the PKIS data-

set and the other evaluation metrics. These results indicate that the
IDDkin model can achieve good performance under different test

data, indicating its strong generalization ability.

3.9 Case studies: sorafenib, dasatinib and sunitinib
Three anticancer drugs approved by the US FDA, sorafenib
(Wilhelm et al., 2006), dasatinib (Talpaz et al., 2006) and sunitinib
(Motzer et al., 2007), were selected from the compound data as the
objects of the case studies. These drugs are all FDA approved and
are used to treat cancers, including renal cell carcinoma, hepatocel-
lular carcinoma, haematological malignancies, pancreatic neuroen-
docrine tumours, renal cancer and gastrointestinal stromal tumours.
Sorafenib (Wilhelm et al., 2006) is a US-FDA-approved anticancer
drug for the treatment of advanced renal cell carcinoma and non-
resectable hepatocellular carcinoma. Dasatinib (Talpaz et al., 2006)
is an US-FDA-approved orally administered drug that is used to
treat certain haematological malignancies. Sunitinib (Motzer et al.,
2007) is approved by the US FDA for the treatment of pancreatic
neuroendocrine tumours, renal carcinoma and imatinib-resistant
gastrointestinal stromal tumours (GISTs). A description of these
three anticancer drugs is given in the second column of Table 7. For
each drug, we selected 8 kinases with the highest predictive correl-
ation scores and checked whether the predicted results were verified
by other literature in PubMed.

The experimental results are shown in Table 7. Six, five and four
candidate kinases for sorafenib, dasatinib and sunitinib, respective-
ly, were identified and supported by direct evidence. For example,
the literature (Luo et al., 2020a,b) clearly indicates that s-HBEGF
regulates sorafenib-induced HFSR by relying on JNK2 to stabilize
SIRT1. Furthermore, a study of Src kinase inhibitors (Ren et al.,
2011) mentioned that the Src kinase inhibitor dasatinib kills estab-
lished murine leukaemia cell lines expressing chimeric FGFR1 kin-
ases. In summary, the results of these case studies have
demonstrated that IDDkin is a useful tool for predicting potential
kinase inhibitors.

4 Discussion and conclusion

Previous studies have found that graph neural network methods
achieve significantly better prediction accuracy than traditional
models (Quan et al., 2019; Zeng et al., 2019, 2020) in drug discov-
ery studies due to adequate and valid network knowledge in hetero-
geneous networks. In this study, we developed a novel network-
based influence deep diffusion model (IDDkin) to uncover the bioac-
tivities of small molecules at a kinome-wide level. Apart from the
gold standard compound-kinase association network, we incorpo-
rated a compound similarity network to construct a complicated
heterogeneous network that provides a multiperspective view and
diverse information for enhancing the prediction of kinase inhibi-
tors. IDDkin first uses a deep graph convolution network to aggre-
gate the high-order neighbour information in the compound
similarity network and then diffuses the information in the updated
compound node to the kinase node through the graph attention net-
work. Finally, the updated kinase nodes will diffuse the influence to
the compound nodes by the adaptive weighting method again so
that the compound nodes contain both similarity network know-
ledge and related network information. Theoretically, IDDkin is su-
perior to existing prediction methods of kinase inhibitors because
we incorporated topological information into the compound simi-
larity network and the compound-kinase association network.
Furthermore, IDDkin uses the K-nearest neighbour method to elim-
inate low-similarity associations in the similarity network and con-
siders the higher-order topology information in the compound

Table 6. AUC and AUPR of IDDkin’s variant models on PKIS set and Tang set for ablation study

Simplifed

models

Tang PKIS

AUC Improve AUPR Improve AUC Improve AUPR Improve

IDDkin 0.9139 – 0.2793 – 0.9433 – 0.3582 –

IDDkin-GCN 0.8919 �2.41% 0.1934 �30.76% 0.9379 �0.57% 0.2774 �22.56%

IDDkin-GAT 0.9109 �0.33% 0.2654 �4.98% 0.9392 �0.43% 0.3237 �9.63%

IDDkin-AW 0.8343 �8.71% 0.2378 �14.86% 0.9224 �2.22% 0.3347 �6.56%
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Table 7. The top eight potential kinase candidates detected by IDDkin based on PubMed for the three selected compounds

Compounds Description Kinases Groups Score Evidence

Sorafenib (Wilhelm et al., 2006) is a US-FDA-

approved anticancer drug for the treatment

of advanced renal cell carcinoma and non-re-

sectable hepatocellular carcinoma.

JNK2 CMGC 0.5449 32296111

BLK TK 0.5280 –

FRK TK 0.4959 22500798

LYN TK 0.4904 26912052

AurA Other 0.3830 –

EphA2 TK 0.3809 32203105

FYN TK 0.3647 28625738

Sorafenib CK1d CK1 0.3631 –

Dasatinib (Talpaz et al., 2006) is an US-FDA-

approved orally administered, which used to

the treatment of certain hematological

malignancies

FGFR1 TK 0.5962 21937681

SLK STE 0.4755 –

JNK2 CMGC 0.4724 29266867

FGFR3 TK 0.4348 32370101

HGK STE 0.4266 –

NEK2 Other 0.4187 23652925

MET TK 0.3996 30482914

Dasatinib KDR TK 0.3905 –

Sunitinib (Motzer et al., 2007) is approved by

US-FDA for the treatment of pancreatic neu-

roendocrine tumours, renal carcinoma and

imatinib-resistant gastrointestinal stromal

tumour (GIST).

GCK STE 0.9097 –

FRK TK 0.8161 –

AurA Other 0.8135 –

TRKC TK 0.7489 26009590

FER TK 0.7120 –

TRKB TK 0.7084 24759734

MNK2 CAMK 0.7033 19844230

Sunitinib FYN TK 0.7002 27589830
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similarity network. The use of the graph attention network and
adaptive weighting method fully mines the effective information
about compound-kinase pairs, which helps to improve the perform-
ance of the model. To verify these points, we used 5-fold cross-
validation to confirm IDDkin’s predictive ability. The IDDkin model
achieves superior prediction performance compared with the trad-
itional kinase inhibitor prediction model or the models commonly
used for global association prediction based on a heterogeneous net-
work. IDDkin makes full use of the structural information of the
compounds and the heterogeneous network information, while the
traditional kinase inhibitor prediction models only use the structural
information of the compound and association information [i.e.
MTDNN (Li et al., 2019), PFPECFP (Avram et al., 2018)]. The
models commonly used in association prediction only consider het-
erogeneous network information and do not incorporate compound
structure information [i.e. NMF (Lee and Seung, 1999; Lee and
Seung, 2001), RWR (Lv et al., 2015; Tong et al., 2006)], which may
be an important reason why their global prediction is worse than
that of IDDkin. In addition, we also studied the importance of each
stage of the IDDkin model to improve the performance of the model
through an ablation study. To verify the generalizability of IDDkin,
we lowered the activation threshold to pIC50¼6.0 in the Tang and
PKIS sets and used the data points with a pIC50 cut-off between 6.0
and 6.3 as the test set. Finally, we conducted a case study to confirm
the IDDkin model’s ability to predict new compound-kinase associa-
tions. In these experiments, IDDkin achieved good performance,
confirming its strong predictive ability and generalization ability.

In future work, since IDDkin is an extensible framework, merg-
ing or collecting more effective information from the database or lit-
erature may improve the model’s predictive ability. In addition, due
to the limitations of the deep influence diffusion model, IDDkin can
only incorporate compound-related information at present. The dir-
ection for future development is to modify the structure of the deep
influence diffusion model and extend IDDkin to integrate both
compound-related information and kinase-related information,
which include the sequence information and the functional informa-
tion of the kinases. In summary, the superior predictive performance
of our model is attributed to compound-kinase heterogeneous net-
works, network-based deep learning and graph neural network
methods. From a translational perspective, the network tools devel-
oped here can help develop novel and effective drug discovery meth-
ods to treat many complex diseases from the perspective of
network-based kinase inhibitor prediction if broadly applied.
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