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Abstract. MicroRNAs (miRNAs) play a key role in various biological pro-
cesses associated with human diseases. Identification of miRNA-disease rela-
tionships can help to understand disease pathogenesis. Experimentally verifying
substantial associations between miRNAs and diseases is the most convincing
but time-consuming, while in silico methods can provide efficient alternatives.
However, existing computational methods still have room for improvement in
considering topology and prior information of network nodes. In this paper, we
presented a novel model called GCMCAP, in which we referred to the pre-
diction of potential miRNA-disease associations as a recommendation problem.
In our framework, we integrated graph convolution networks as feature
extractors into a matrix completion to predict diseases related miRNAs. We
tested GCMCAP and other three methods on the same dataset. The results
indicate that GCMCAP outperforms other methods with respect to average AUC
value. In addition, case studies show that GCMCAP has a great capability to
discover novel miRNA-disease associations.

Keywords: MicroRNA � Disease � Association � Graph convolution
networks � Matrix completion

1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that can regulate gene expression
during post-transcription and influence the output of protein-coding genes [1]. Existing
researches have shown that miRNAs are involved in many biological processes, such
as differentiation [2], development [3], immune reaction [4], apoptosis [5], and
pathogenesis. There are already compelling evidences that human miRNAs are asso-
ciated with complex diseases [6]. For example, studies by Zare et al. have shown that
miRNA expression is a regulator of tumorigenesis [7]. In addition, the Human
MicroRNA Disease Database (HMDD v2.0) has shown that more than 10,000 asso-
ciations between miRNA and disease have been identified [8], involving 378 diseases
and 572 miRNAs. Therefore, it is necessary to discover other potential associations
between miRNA and disease in order to more fully understand pathogenesis of human
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diseases associated with miRNAs, thereby facilitating disease diagnosis, treatment, and
prevention. Identifying the associations between miRNA and disease through biolog-
ical experiments is the most convincing but time-consuming, while in silico methods
can provide efficient alternatives [9–11].

The most of these proposed methods are based on the assumption that similar
miRNAs are related to similar diseases [12, 13]. For example, Zhao et al. discovered
disease related miRNA candidates using gene expression data and miRNA-gene reg-
ulation [14]. Chen et al. proposed a method to identify disease-related miRNAs by
random walks with restart on the miRNA similarity network [15]. Xuan et al. evaluated
the k most functionally similar neighbors by considering the disease terms and phe-
notype similarity [16]. You et al. constructed a heterogeneous network by integrating
different types of heterogeneous biodata sets and proposed a path-based approach to
calculate the association score between miRNA and disease [17]. Zou et al. predicted
miRNA-disease association based on social network analysis [18]. Xiao et al. used
graph regularization non-negative matrix factorization to identify microRNA-disease
associations [19]. Luo et al. predicted Small Molecule-microRNA Associations based
on Non-negative Matrix Factorization [20]. All these methods make good use of the
prior information in the miRNA/disease interaction network.

On the other hand, machine learning-based methods are proposed as many known
associations are confirmed by biological experiments. Based on transduction learning,
Luo et al. developed a collective prediction method of disease-associated miRNAs
[21]. Chen et al. presented a computational model named Laplacian Regularized Sparse
Subspace Learning, which projected miRNAs/diseases’ graph feature profile to a
common subspace [22]. These results show that machine learning based methods
improve the performance of association prediction. Based on inductive matrix com-
pletion, Ding, X et al. exploited an improved computation method. Li et al. released an
effective computational model of Matrix Completion for MiRNA-Disease Association
prediction (MCMDA) [23]. Recently, methods combined neural network have been
used for association prediction. For example, Hou et al. combined neural network
model and induction matrix completion (NIMC) to predict disease-gene association
[24]. Xuan, P et al. proposed a method to predict disease related miRNAs based on
network representation learning and convolutional neural networks [25]. Han, P et al.
predicted disease-gene association by integrating graph convolutional network and
matrix factorization [26].

The methods based on similarity measure can effectively integrate heterogeneous
data, but it is limited by known associations. On the other side, machine learning-based
methods have impressive results for miRNA-disease association predictions, but there
is still room for improvement in using miRNAs and disease prior information. In this
paper, we referred to the prediction of potential miRNA-disease associations as a
recommendation problem and proposed a novel computational framework named
GCMCAP. We integrated graph convolutional neural networks into matrix completion
to predict the associations between miRNA and disease. With the help of graph con-
volutional networks, non-linear and high-order neighborhood information can be
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captured. In addition, the problem of no negative sample in training progress can be
circumvented. We tested GCMCAP and other three methods on the same dataset. The
results suggest that GCMCAP outperforms other methods in terms of average AUC
values. Moreover, case studies show that GCMCAP has a great capability to discover
novel miRNA-disease associations.

2 Materials and Methods

2.1 Datasets

We downloaded miRNA-gene interactions from experimentally verified databases,
including miRecords v4.0 [27], TarBase v6.0 [28] and miRTarBase v4.5 [29]. After
unioning and removing duplicates, we got 38,089 interactions between miRNAs and
genes, involving 477 miRNAs and 12,422 genes. We downloaded gene-gene inter-
action network from HumanNet which contains 476,399 interactions among 16,243
genes [30]. We downloaded validated miRNA-disease associations datasets from the
HMDD database v2.0. As done in Xuan et al. [31], we regarded multiple miRNA
transcripts as the same mature miRNA. So we acquired 5424 associations involving
378 diseases and 495 miRNAs from HMDD v2.0. We downloaded the disease hier-
archical directed acyclic graphs (DAGs) from MeSH (https://www.nlm.nih.gov/mesh/).
To ensure consistency of miRNAs, diseases and associations, we removed some
irregularly named diseases in MeSH and eliminated miRNAs that are missing from the
three miRNA target databases mentioned above. 4887 experimentally validated
miRNA-disease associations involving 327 diseases and 351 miRNAs were retained.
Consequently, miRNA matrix Sm 2 Rm�m, disease matrix Sd 2 Rd�d and miRNA-
disease association matrix S 2 Rm�d were formed for prediction task.

2.2 Method Overview

We regarded the prediction of miRNA-disease associations as a recommendation
problem with four main steps. In the first step, we calculated miRNA-miRNA and
disease-disease pairwise similarities and compiled them into two adjacency matrices. In
the second step, we respectively performed a multi-layer graph convolutional networks
on the adjacency matrices to assign node feature to each miRNA and disease. In such
way, the high-order neighborhood information of each miRNA and disease node is
encoded into embeddings. In the third step, we modeled association ratings as the inner
product of the embeddings projected onto a latent space. In the last step, we used
matrix completion principle to obtain the ratings for each miRNA-disease association.
In this stage, the embeddings of miRNA/disease are adjusted by minimizing the dif-
ference between the reconstruction matrix and the initial matrix. Figure 1 depicts the
whole framework of the proposed method.
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2.3 Diseases Semantic Similarity and MiRNA Functional Similarity

The MeSH database provides a valuable reference system in the form of DAGs (http://
www.ncbi.nlm.nih.gov/). Disease similarity can be calculated using DAGs according
to Wang’s method [32]. In DAGs, nodes and edges represent diseases and the asso-
ciations between diseases respectively. We calculated the similarity between the two
diseases through the disease hierarchical relationship in DAGs. The semantic value of
disease d is calculated by the following formula:

D tð Þ ¼ max D � D t'ð Þj 2 childrenof tð Þf g t 6¼ d
D dð Þ ¼ 1 t ¼ d

�
ð1Þ

where D represents the semantic contribution factor. We set D as 0.5 as suggested by
Wang et al.. According to the assumption that diseases that share a large part of the
DAG tend to have higher semantic similarity, the following calculation methods are
available:

Fig. 1. Workflow of GCMCAP
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Sd di; dj
� � ¼

P
t2Pi \Pj

Di tð ÞþDj tð Þ
� �

P
t2Pi

Di tð Þþ
P
t2Pj

Dj tð Þ ð2Þ

Di tð Þ and Dj tð Þ are the semantic values related to disease di and disease dj, respectively.
The semantic similarity of each two diseases is calculated based on the position of the
two diseases in the DAG and their semantic associations with ancestor diseases.

To avoid reliance on existing associations between miRNA and disease, inspired by
Xiao et al., we estimated the similarity between miRNAs using a weighted gene
interaction network and an experimentally validated miRNA-target regulatory rela-
tionship. Initially the gene function interaction network is downloaded from the
HumanNet. Interaction score between two genes indicates the strength of the associ-
ation between genes. We used the following normalization technique on the gene
interaction network to get the pairwise similarity score Sg:

Sg gi; gj
� �

¼
SG gi; gj

� �
� Smin

Smax � Smin
ð3Þ

where SG gi; gj
� �

denotes similarity score before normalization. We obtained the
miRNA-target regulatory relationship from collated miRNA-gene data. Then the
similarity between the gene and the target gene set is defined as the maximum simi-
larity between the gene and others. It can be described by the following formula:

SG gt;Tð Þ ¼ maxgti2T Sg gt; gtið Þ� � ð4Þ

Based on the assumption that the greater the number of common target genes, the
greater the similarity between miRNAs, the functional similarity Sm mi;mj

� �
between

miRNA mi and mj can be calculated by the following BMA method [33]:

Sm mi;mj
� � ¼

P
gi2T1

SG gi;Tj
� �þ P

gj2T2

SG gj;Ti

� �

Ti þj jTj
�� �� ð5Þ

where Ti and Tj denote target gene sets of mi and mj respectively.

2.4 Graph Convolutional Feature Extractor

The graph convolutional network (GCN) is a kind of multilayer neural network with
graph as input. It represents neighbor node features and network information as output
vectors. GCNs have been successfully applied in areas such as recommendation sys-
tems and drug interactions [34, 35]. In this paper, we resorted to GCNs to convert
miRNA and disease networks into embeddings and map the learned embeddings into
latent space. The outputs will be applied to the matrix completion in the downstream
framework.
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Based on the assumption that node features are associated with all of its neighbors,
we employed a simple solution to integrate network information. Let miRNA and
disease similarity networks (adjacent matrices) be Sm and Sd , respectively. We defined
the multiplication of Sm and Xm to obtain the neighborhood information of the current
miRNA node. So we obtained the following neural network propagation rule for
miRNA nodes.

f ðXðlÞ
m ; SmÞ ¼ rðSmXðlÞ

m W ðlÞ
m Þ ð6Þ

where r denotes the non-linear activation function, X lð Þ
m denotes the miRNA features

output by the l-layer neural network, and W lð Þ
m represents the weight of the miRNA

features. However, this method of multiplication modeling can easily lead to overfitting
the local neighborhood structure of a graph with a wide node degree distribution.
Therefore, we treated each initial node feature Xm as a graph signal according to
spectral graph theory, and use the spectral convolution operation SmHXm on the graph
Sm to replace the multiplication. Referring to the convolution theorem that convolution
operation is equivalent to the product after Fourier transform, the following equation
can be obtained:

SmHXm ¼ USððUT
S gÞ � ðUT

S XmÞÞ ð7Þ

where US is the eigenvector matrix of Sm, g represents the convolution kernel, and �
represents the hardmard product. To simplify formula (2), we treat diagonal matrix
gh ¼ diag UT

S g
� �

as parameterized convolution kernel. Then the hardmard product can
be changed to the form of matrix multiplication. However, Eq. (7) is still limited by 3
problems. First, the information of miRNA nodes is very important for network feature
extraction, but the adjacency matrix Sm does not contain node information. Second, Sm
is not normalized, which will lead to a larger feature values extracted by nodes with
more neighbors. Third, Eq. (7) requires the eigendecomposition of Sm, which has high
computational complexity for a large miRNA/disease networks.

To solve the first two limitations, we used ~Sm ¼ Sm þ I to add the identity matrix I
to the miRNA matrix to form a self-loop, and used the normalized Laplacian matrix
Lm ¼ I � D�1=2SmD�1=2 to represent the network structure. The normalized Laplacian
matrix ~Lm with self-loop is obtained, i.e.

~Lm ¼ I � ~D�1
2

m
~Sm ~D

�1
2

m ð8Þ

where ~Dm denotes the diagonal matrix ~Dm
� 	

i¼
Pn

j¼1
~Sm
� 	

ij. In this way, we can per-

form eigendecomposition on ~Lm, and replace the US with the eigenvector matrix UL

obtained from the feature decomposition. Equation (7) can be transformed into the
following form.

SmHXm ¼ ULghU
T
LXm ð9Þ
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To circumvent the third limitation, we used Kipf’s method to avoid eigendecom-
position [36]. Based on Eq. (9), the first-order Chebyshev polynomial is used as the
convolution kernel, and the maximum eigenvalue k of Lm is approximated to 2. The
propagation rule of miRNA nodes on the graph Sm can be written as:

Xðlþ 1Þ
m ¼ rð~D�1

2
m
~Sm ~D

�1
2

m XðlÞ
m W ðlÞ

m Þ ð10Þ

where X lð Þ
m 2 Rm�e denotes the miRNA features output by l-layer network, m is the

number of miRNA nodes, and e is the embedding size. The multi-layer networks can be
achieved by stacking Eq. (10). Multi-layer networks imply the use of higher-order
neighborhood information. Similarly, the propagation rule of disease nodes on the
graph Sd can be written as:

Xðlþ 1Þ
d ¼ rð~D�1

2

d
~Sd ~D

�1
2

d XðlÞ
d W ðlÞ

d Þ ð11Þ

where X lð Þ
d 2 Rd�e denotes the disease features output by l-layer network, d is the

number of disease nodes. Disease and miRNA embeddings are trained simultaneously.

2.5 Matrix Completion

Matrix completion has been well used in recommendation system [37]. Similarly, we
considered association prediction as a recommendation problem and use known
miRNA-disease associations to recover missing entries in association matrix S 2 Rm�d .
Where m is the number of miRNAs. For each entry in matrix S, Sij = 1 if the miRNA is
associated with the disease, otherwise, Sij = 0. Let S0 be the matrix to be completed.
We modeled association ratings as the inner product of the features of miRNAs and
diseases projected onto a latent space. i.e. S0 ¼ KH, where K 2 Rm�j and H 2 Rd�j

denote miRNA and disease space, respectively. According to low-rank assumption, j
satisfies j\\m; d. The following formula can be defined:

min
K;H

1
2

KHT � S


 

2

F þ k Kk k2F þ Hk k2F
� �

ð12Þ

where k � kF denotes Frobenius norm and k denotes the regularization coefficient.
However, the classical matrix completion cannot directly take advantage of the
embeddings of known miRNA and disease. Inspired by Natarajan et al., we set T1 and
T2 as projection matrices [38]. The features of miRNA and disease can be mapped into
latent spaces with the same dimensions by K ¼ XmT1 and H ¼ XdT2, respectively.
Therefore, the known associations and the features of miRNA and disease can be
simultaneously used by the following improved matrix completion.

min
T1;T2

1
2

XmT1T
T
2 X

T
d � S



 

2
F þ k T1k k2F þ T2k k2F

� �
ð13Þ
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2.6 Training and Evaluation

A classic matrix completion for miRNA-disease association prediction considered the
miRNA matrix Xm and disease matrix Xd as inputs. T1 and T2 represent the low rank
decomposition of the projection matrix T . In proposed method, the similarity matrices
Xm and Xd are encoded by graph convolutional networks, respectively. The linear

projection XmT1T2Xd is replaced by the nonlinear rating XðlÞ
m XðlÞ

d

h iT
generated by the

graph convolution network. According to the above annotation, the loss function of the
graph convolutional matrix completion model can be defined as:

loss ¼ 1
2
XðlÞ
m XðlÞ

d

h iT
�S











2

F

þ k Wmk k2F þ Wdk k2F
� �

ð14Þ

where XðlÞ
m ¼ r ~D�1

2
m ~Sm ~D

�1
2

m XmW
ðlÞ
m

� �
and XðlÞ

d ¼ r ~D�1
2

d
~Sd ~D

�1
2

d XdW
ðlÞ
d

� �
denote the outputs

of graph convolution networks. Considering the advantage that all operations are
differentiable, the proposed model can be train in an end-to-end workflow by gradient
descent algorithm. Algorithm 1 shows the overall prediction procedure.

Algorithm 1.
Input: m d

for do
l d e
dX R
l m e
mX R

for do

l
m i

X l
d j

X ijS

F m F d Floss S S W W
           end for

end for

mW dW
end for

Tl l
m dS X X

Output: 

3 Results

In this part, we verified the practicality of the proposed method GCMCAP through
experiments. Firstly, the evaluation indicators for the performance of all methods are
introduced. Then the performance of the GCMCAP and several other common
miRNA-disease prediction methods are compared. Next, we carried out parameter
analysis to verify the reliability and robustness of the model. Finally, case studies are
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arranged to explore the capacity of GCMCAP to discover novel disease-associated
miRNAs.

3.1 Experiment Settings

To evaluate the performance of the GCMCAP algorithm, we performed 5-fold cross
validation (CV) and 10-fold CV. Taking 5-fold CV as an example, in each round, the
known miRNA-disease associations are randomly divided into five disjoint subsets.
One subset is used as the validation set and the remaining subsets are utilized as the
training set. For each fold, embedding size e is set from 32; 64; 128; 256f g, learning
rate c is set from 0:001; 0:01; 0:1f g, the number of GCN layers l is set from 2; 3; 4; 5f g
and probability of dropout is set from 0:5; 1f g. All parameters are considered based on
grid search. All experiments are repeated for 5 times, the reports are average of the 5
runs. Refer to Kipf’s method, we used the identity matrix as the initial feature matrix to
feed GCNs. All methods processes are implemented using Tensorflow framework
(v1.9) and trained using the Adam stochastic optimization algorithm [39].

3.2 Evaluation Metrics

After the training progress completed, we obtained all association ratings from the
rating matrix. The four values of true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) are calculated. The true positive rate(TPR),false positive
rate (FPR), Precision, and Recall were calculated as following formulas:

TPR ¼ TP
TPþ FN

;FPR ¼ FP
FP + TN

ð15Þ

Precision ¼ TP
TP + TP

;Recall ¼ TP
TP + FN

ð16Þ

we used the TPRs and FPRs to plot the receiver operating characteristic (ROC) curves.
Then the area under the ROC curves (AUCs) are used to measure the global perfor-
mance of models.

To get indicators that reflects global performance in the event of class imbalance,
the mean Average Precision (mAP) is used to solve the single-point value limitation of
the Precision. We focused more on the set of top K miRNA related to a disease, the
sequence of the whole recommendation list may be not important. Therefore, we
utilized Precision@N and Recall@N to evaluate the quality of the recommendation list.
Where N denotes the percentage of sorted rating results. We set N = 10; 20; 30f g in all
experiments.

3.3 Performance Evaluation

To assess the performance of GCMCAP, we compared it with the other three methods:
RWRMDA [15], KATZ [18], MIDPE [31]. RWRMDA is a plain baseline and utilizes
random walk algorithm to identify potential unknown association. KATZ combines
social network analysis methods with machine learning and predicts unknown
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miRNA-disease relationships.MIDPE completely integrates various ranges of topologies
around the different categories of nodes. We reproduced the three methods based on the
formulas in the papers, respectively. We used 5-fold CV and 10-fold CV to compare our
method with existing methods based on the same dataset. Table 1 and Table 2 list the
results of all methods. GCMCAP outperforms other methods with respect to the most
indicators. In 5-fold CV, our method yields an average AUC value of 0.894, which is
better than RWRMDA (0.804), MIDPE (0.702) and KATZ (0.864). Table 2 shows that
the results of 10-fold CV are similar to the 5-fold CV, and GCMCAP is outperform other
methods. Furthermore, P@10 and R@10 of GCMCAP are significantly higher than
existing methods, which shows a better performance in topK prediction ability. Figure 2
shows the ROC curves of various comparison methods, which suggests the overall per-
formance of the models. r in the figure denotes the standard deviation. The ROC curve
generated by GCMCAP is above all the curves and closer to the upper left corner of the
coordinate system. The results suggest that the associations in the similaritymatrixmaybe
not directly reflect the relationship between miRNA or disease. Since GCMCAP inte-
grates graph convolution networks into matrix completion method, non-linear neigh-
borhood information can be abstracted from miRNA network and disease network.
Furthermore, GCMCAP does not rely on negative samples for training, which effectively
circumvent the problem of no negative sample.

Fig. 2. (a) ROC curves of 5-fold CV; (b) ROC curves of 10-fold CV.

Table 1. Results on 5-fold cross validation

Method MAP AUC P@10 P@20 P@30 R@10 R@20 R@30

RWRMDA 0.032 0.804 0.026 0.039 0.046 0.102 0.207 0.309
MIDPE 0.016 0.702 0.015 0.014 0.018 0.114 0.219 0.325
KATZ 0.14 0.864 0.267 0.206 0.163 0.134 0.245 0.346
GCMCAP 0.197 0.894 0.347 0.223 0.153 0.189 0.319 0.449
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3.4 Parameter Analysis

In this section, we analyzed the effects of parameters through the parameter adjustment.
Because AUC is an indicator that can evaluate the comprehensive performance of the
model, the influence of parameter changes on the AUC value is analyzed. Learning rate
is an important parameter for the optimization model using gradient descent algorithm.
We fixed the other parameters and set the learning rate from 0:001; 0:01; 0:1f g. Fig-
ure 3(a) shows that there may be an optimal value for the initial learning rate. A small
learning rate will cause the model to converge slowly, conversely a large learning rate
may make it difficult to converge. Figure 3(b) shows that the embedding size does not
affect convergence of GCMCAP within an appropriate size range, which indicates that
the proposed method has the ability to obtain prior information steadily. However,
when the embedding size is too large, too many parameters make the model difficult to
train or even overfitting. This pattern is consistent with other related studies [40].

Table 2. Results on 10-fold cross validation

Method MAP AUC P@10 P@20 P@30 R@10 R@20 R@30

RWRMDA 0.016 0.805 0.012 0.018 0.022 0.102 0.204 0.306
MIDPE 0.008 0.704 0.008 0.007 0.009 0.123 0.241 0.358
KATZ 0.083 0.868 0.17 0.12 0.099 0.119 0.223 0.327
GCMCAP 0.153 0.896 0.238 0.142 0.093 0.225 0.368 0.501

Fig. 3. (a) ROC curves of 5-fold CV; (b) ROC curves of 10-fold CV.
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The model with a small number of GCN layers l perform well, and the performance
decreases rapidly when l[ ¼ 4 according to Fig. 3(c). The increase of layer may
capture the more global information, but also the more noise is captured. Dropout is a
commonly used method to improve performance by avoiding overfitting. However,
there is no obvious effect of the dropout on the performance of GCMCAP according to
Fig. 3(d). The possible reason is that the effect of dropout is not obvious due to sparse
data.

3.5 Case Studies

To further explore the capacity of GCMCAP to discover potential miRNAs associated
with disease, 3 given diseases of Glioma, Carcinoma Hepatocellular and Ovarian
Neoplasms are analyzed. All known associations in HMDD v2.0 are used to train and
unknown associations are used for validation. For each disease, the candidate miRNAs
are ranked based on the ratings. The top 10 miRNA candidates are obtained from
prediction results.

The latest human microRNA disease database (HMDD v3.2) is used to confirm
miRNA candidates for given 3 diseases. HMDD V3.2 provides extensive experi-
mentally supported evidence for human microRNA (miRNA) and disease associations.
HMDD v3.2 contains twice as many human miRNA disease associations as previous
HMDD v2.0. As shown in Table 3, HMDD v3.2 confirms 6,6 and 5 miRNA candi-
dates are associated with Glioma, Carcinoma Hepatocellular and Ovarian Neoplasms,
respectively. In addition, some candidates also rank higher in other methods. For
example, 3, 2, and 3 miRNAs are identified by KATZ as the top ten in three diseases,
respectively. The results show that miRNA candidates predicted by GCMCAP are very
reliable and GCMCAP has stable prediction performance. Furthermore, most con-
firmed candidates have higher rankings, indicating that top K performance of
GCMCAP is outstanding.

Table 3. Evidences of the top 10 associated miRNA candidates for the three given diseases

Disease No. of
miRNAs
confirmed

By the
latest
HMDD

Top 10 ranked predictions
Rank miRNAs Evidences Rank miRNAs Evidences

Glioma 6 1 hsa-mir-
219

HMDD v3.2 6 hsa-mir-
429

HMDD v3.2

2 hsa-mir-
136

HMDD v3.2 7 hsa-mir-
642a

Unconfirmed

3 hsa-mir-
135b

HMDD v3.2 8 hsa-mir-
103a

Unconfirmed

4 hsa-mir-
216a

Unconfirmed 9 hsa-mir-
29c

HMDD v3.2

5 hsa-mir-
195

Unconfirmed 10 hsa-mir-
296

HMDD v3.2

(continued)
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4 Discussion and Conclusion

Identifying miRNA-disease relationships helps to understand disease pathogenesis,
diagnosis and treatment. We make observation that existing computational methods
still have room for improvement in considering the topology and prior information of
network nodes. To adapt to the graph structured disease network and miRNA network,
we use graph convolutional networks to model miRNA and disease node embeddings.
In addition, GCMCAP also takes advantage of matrix completion theory to circumvent
the problem of no negative sample in training progress. Cross validations are imple-
mented to evaluate the performance of GCMCAP. The proposed method GCMCAP
obtained an average AUC value of 0.894 and 0.896. In comparison with several other
methods, GCMCAP outperforms other baselines in terms of most indictors. The result
shows that associations between disease and miRNA can be more accurately identified
by GCMCAP. The process of parameter analysis shows that our model is less affected
by parameters and has stable prediction ability. Case studies show the ability of dis-
covering new disease associated miRNAs. For future work, we may explore obtaining
miRNA and disease node information from other data sources for more prior infor-
mation. Additionally, graph convolution networks with attention mechanism may
further improve the predictive ability for disease-related miRNAs.

Table 3. (continued)

Disease No. of
miRNAs
confirmed

By the
latest
HMDD

Top 10 ranked predictions
Rank miRNAs Evidences Rank miRNAs Evidences

Carcinoma,
Hepatocellular

6 1 hsa-mir-
1296

HMDD v3.2 6 hsa-mir-
519a

HMDD v3.2

2 hsa-mir-
632

Unconfirmed 7 hsa-mir-
219

Unconfirmed

3 hsa-mir-
17

HMDD v3.2 8 hsa-mir-
490

HMDD v3.2

4 hsa-mir-
379

HMDD v3.2 9 hsa-mir-
545

Unconfirmed

5 hsa-mir-
518a

HMDD v3.2 10 hsa-mir-
659

Unconfirmed

Ovarian
Neoplasms

5 1 hsa-mir-
134

HMDD v3.2 6 hsa-mir-
379

Unconfirmed

2 hsa-mir-
1296

Unconfirmed 7 hsa-mir-
518a
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