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Abstract—MicroRNAs (miRNAs) play a significant role in
regulating gene transcription and tend to act in a combinatorial
way, which provides great insights to explore disease-related
miRNA pairs or modules for comprehending the synergistic
roles of miRNAs in complex diseases. As wet experiments
are often laborious and costly, computational methods offer
great convenience for predicting potential associations between
miRNAs and diseases. Existing methods focus on either the
‘one miRNA-one disease’ paradigm, or merely the synergetic
miRNA network about specific diseases, which may lead to the
incomplete understanding of the synergistic effect of miRNAs on
the pathogenesis of complex diseases. In this work, we present
a novel tensor-based framework, named GraphTF1, to pre-
dict disease-associated miRNA-miRNA pairs. GraphTF exploits
graph attention network to effectively capture node features over
multi-source biological network. Then, the learned miRNA and
disease representations are used to reconstruct the association
tensor for predicting potential disease-associated miRNA-miRNA
pairs. Empirical results showed that the proposed method outper-
formed all other state-of-the-art methods under five-fold cross-
validation. Robustness experiments also indicated the stability of
GraphTF. Moreover, case studies for Breast Neoplasms and Lung
Neoplasms further demonstrated the effectiveness of GraphTF in
identifying potential disease-related miRNA-miRNA pairs.

Index Terms—disease associated miRNA-miRNA pairs, graph
attention network, tensor factorization

I. INTRODUCTION

MiRNAs are a class of endogenous non-coding RNAs with
about 22-25 nucleotides. MiRNAs tend to co-regulate target
genes in a combinatorial way and influence the occurrence
and development of complex diseases [1]. Therefore, identi-
fying disease-related miRNA modules is of great help for the
pathological study and biomarker detection of diseases.

To dig out more about miRNA synergistic mechanism, Zhao
et al. [2] constructed a miRNA-miRNA synergistic relation-
ships of differentially expressed miRNAs of colorectal cancer
via computational analysis of miRNA and gene expression
microarray and uncovered the functional synergistic miRNA
pairs in colorectal cancer tissues. Cilek et al. [3] explored

*Corresponding author: hey.shi@foxmail.com (Heyuan Shi).
1Availability and implementation: https://github.com/ZihanLai/GraphTF.

functionally relevant miRNAs by constructing pathway-based
miRNA-miRNA networks in trastuzumab treated breast cancer
cell lines. Although these studies give a certain comprehension
of the functional synergism of miRNAs, they only study the
effect of synergetic miRNA combinations on specific diseases,
which is difficult to extend to large-scale prediction of miRNA
combinations for multiple diseases.

Consequently, developing an effective computational frame-
work to discover disease-associated miRNA combinations is
a promising mission. However, how to model the miRNA-
miRNA-disease associations still remains challenging. High-
order tensors (i.e., N-way arrays with N ≥ 3) is ubiquitous
in social network analysis and have shown to successfully
represent data that have more than two modes of variation
[4]. Huang et al. [5] present Tensor Decomposition with Rela-
tional Constraints (TDRC) which combined miRNA functional
similarity and disease semantic similarity to constrain the
factorization of tensor to predict multi-type miRNA-disease
associations. Liu et al. [6] integrated multi-view miRNAs and
diseases information to discover potential miRNA-miRNA-
disease associations based on a tensor completion framework.
Although conventional tensor-based factorization method is
efficient to represent multi-way data, it ignores the complex
interactions between each other. As machine learning-based
method can better exploit the relationship using contextual
information [7], Sun et al. [8] proposed a Deep Tensor
Factorization model (DTF) to predict drug synergy. Julkunen
et al. [9] present comboFM, a machine learning framework for
predicting the responses of drug combinations by modeling the
drug interactions through higher-order tensors. Nevertheless,
existing approaches cannot fully explore the rich structural
information contained in the obtained similarity matrices,
which may affect the quality of feature representations and
thus influence the predictive performance.

To address the above issues, we propose a novel tensor
factorization framework combined with graph attention net-
work (GAT), namely GraphTF to predict new diseases related
miRNA-miRNA pairs. First, we model the triple miRNA-
miRNA-disease relationships as an association tensor, where
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its three dimensions representing miRNA, miRNA and dis-
ease, respectively. Then we use graph attention network to
extract the feature representation of miRNAs and diseases
from multi-source data. After that, GraphTF applies a tensor-
based procedure to reconstruct the association tensor using
the learned feature representation for prediction. We use five-
fold cross-validation to evaluate the performance of GraphTF.
Experimental results demonstrate that our proposed GraphTF
model outperforms existing state-of-the-art methods. Case
studies on Breast Neoplasms and Lung Neoplasms further
confirm the powerful predictive ability of GraphTF.

II. MATERIALS

A. Construction of known third-order association tensor

Previous studies have shown that miRNAs from the same
family tend to regulate common gene expression [10] [11]
and members from the same miRNA family are related to
similar diseases [12] [13]. Therefore, we collect the miRNA-
miRNA synergetic links using the miRNA family information
from miRbase v22 [14] and download the experimentally
verified human miRNA-disease associations from HMDD v3.2
[15]. To construct the miRNA-miRNA-disease associations,
we choose shared miRNAs that appear in both miRNA-disease
and miRNA-miRNA relations. Finally, we get 964 known
miRNA-miRNA associations and 5187 known miRNA-disease
associations, covering 325 miRNAs in 78 families and 283
diseases. The third-order tensor X is constructed as follows:

X (mi,mj , dk) =

 1, 〈mi,mj〉 = 1,
〈mi, dk〉 = 1 and 〈mj , dk〉 = 1

0, otherwise.
(1)

where X (mi,mj , dk) = 1 indicates that miRNA i and
miRNA j are jointly associated with disease k, which may
form a miRNA pair and have a synergistic or similar function
to disease. The tensor is extremely sparse containing only
15484 known interactions.

B. MiRNA functional similarity

To avoid existing reliance between miRNAs and diseases,
we measure the miRNA functional similarity using associa-
tions between miRNAs and genes in the same way as GRNMF
[16]. The gene interaction score (IS) is downloaded from the
HumanNet database. Then the normalized interaction scores
(NIS) of genes are obtained using min-max normalization as
follows:

NIS (gi, gj) =
IS (gi, gj)− ISmin

ISmax − ISmin
(2)

where IS (gi, gj) represents the raw interaction scores of gene
i and j. ISmax and ISmin denote the maximum and minimum
IS in HumanNet. Consequently, the similarity between gene
i and j is given as follows:

S (gi, gj) =

 1, gi = gj
0, e (gi, gj) /∈ HumanNet
NIS (gi, gj) , e (gi, gj) ∈ HumanNet.

(3)

where e (gi, gj) indicates the association between gene i and j.
Afterward, the similarity between gene m and gene set GS =
{g1, . . . , gk, . . . , gn} is calculated as follows:

S (gm, GS) = min
1≤k≤n

S (gm, gk) (4)

The functional similarity of miRNA i and j is calculated by:

MFS (mi,mj) =

∑
g∈Gi

S (g,Gj) +
∑

g∈Gj

S (g,Gi)

|Gi|+ |Gj |
(5)

where Gi and Gj are miRNA i and j associated gene sets
respectively; and |G| is the number of genes in G.

C. MiRNA sequence similarity

The miRNA sequence data is downloaded from miRbase
v22 [14]. We calculate the sequence similarity by applying
the Needleman-Wunsch global alignment algorithm [17]. Let
MS ∈ Rq×q be the matrix of miRNA sequence similarity
score. The normalized score NMS(mi,mj) between miRNA
i and j can be obtained as follows:

NMS (mi,mj) =
MS (mi,mj)−MSmin

MSmax −MSmin
(6)

where MSmax and MSmin denote the maximum and mini-
mum score in the similarity matrix MS.

D. Disease semantic similarity

The MeSH database can be described as a hierarchical
Directed Acyclic Graph (DAG), we then obtain the disease
DAGs to calculate the disease semantic similarities as the
same way in MISIM [18]. For a disease di, the DAGi

consists not only the ancestor node of di and di itself, but
the direct edges from parent nodes to child nodes. That is,
DAGi = (di, Ai, Ei), where Ai is the set of all nodes
in DAGi; Ei denotes the corresponding links. Define the
semantic contribution of disease dj ∈ Ai to disease di as
DC(di, dj), which can be formulated as follows:

DC (di, dj) =

{
1, if di = dj
max

{
∆ ∗DC

(
di, d

c
j

)}
, otherwise.

(7)
where dcj ∈ children of dj , ∆ denotes the semantic contribu-
tion factor (∆ = 0.5). Based on Eq.(7), the semantic similarity
score between disease i and j can be calculated as:

DS (di, dj) =

∑
t∈DAGi∩DAGj

(DC (di, dt) +DC (dj , dt))∑
t∈DAGi

DC (di, dt) +
∑

t∈DAGj

DC (dj , dt)

(8)
where DC (di, dt) and DC (dj , dt) denote the semantic
values of disease t related to disease i and j, respectively.
It can be seen that the more diseases shared by disease i and
j, the more similar the two diseases are.
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III. METHODS

A. Model Overview

In this work, we propose a new tensor factorization model
based on GAT, called GraphTF, which consists of three parts
(Figure 1). First, we calculate the miRNA functional similarity,
miRNA sequence similarity and disease semantic similarity
via multi-source information. Second, we use GAT to capture
the complex interaction from similarity graphs and obtain the
representation of miRNA and disease. GAT assigns a new
weight for each edge, which can not only fully mine the
similarity information, but also better capture the network
topology. Finally, the learned latent embeddings are put into
the deep neural network and the output embeddings are used to
reconstruct the miRNA-miRNA-disease tensor for predicting
disease-related miRNA-miRNA pairs.

B. Deep Tensor Factorization with Graph Attention Network

1) Tensor Factorization: Tensor factorization can effec-
tively extract potential high-order relationships for multi-
dimensional data and has been widely used in studying bio-
logical relationships. Thus, we attempt to transform the triple
association prediction problem into a three-order tensor factor-
ization problem. In general, a tensor factorization model first
learns the latent low rank factors from the observed entries,
then reconstructs the tensor with missing entries based on the
learned factors. The CANDECOMP/PARAFAC (CP) method
is one of the most commonly used tensor decomposition
models. A traditional CP model decomposes a tensor into a
sum of component rank-one tensors. Given a third-order tensor
X ∈ Rn1×n2×n3 , the CP model can be expressed as:

X ≈ [[P,B,D]] =
R∑

r=1
pr ◦ br ◦ dr,

s.t.pr ∈ Rn1×1, br ∈ Rn2×1, dr ∈ Rn3×1

(9)

where R denotes the number of rank-one tensors and the
minimal R is the rank of tensor X and P ∈ Rn1×R, B ∈
Rn2×R, D ∈ Rn3×R represent the decomposed factor matrices
concerning the two miRNA modes and the disease mode,
respectively; ◦ denotes the outer product. The goal to best
approximate X is formulated as follow:

min
P,B,D

‖X − [[P,B,D]]‖2F (10)

2) GraphTF model: Generally, the traditional tensor factor-
ization models use different updating rules such as alternating
least squares (ALS) method to optimize the objective func-
tion, which cannot fully extract the complicated interactions
between miRNAs and diseases. Inspired by NIMCGCN [19],
in GraphTF, the feature matrices P and B for miRNAs and D
for diseases are encoded separately by three different nonlinear
fully connected layers. The nonlinear transformations of the
fully connected layers for miRNAs can be expressed as
follows:

f lm1
(P ) = W (l)

m1
relu

(
· · · relu

(
W (1)

m1
P + b1m1

)
+ blm1

)
(11)

f lm2
(B) = W (l)

m2
relu

(
· · · relu

(
W (1)

m2
B + b1m2

)
+ blm2

)
(12)

where m1 and m2 represent the feature matrix of miRNAs in
1-mode and 2-mode; W (l)

m1 and W (l)
m2 are the weight matrices

of the l-th layer in the nonlinear fully connected layer; blm1
and

blm2
are the bias items for the l-th layer and relu (·) denotes

the rectified linear unit nonlinear activation function.
Similarly, the final nonlinear transformations for diseases

are described as follows:

f ld (D) = W
(l)
d relu

(
· · · relu

(
W

(1)
d D + b1d

)
+ bld

)
(13)

With the above definitions, the predicted tensor can be
obtained by

[[
f1
m1

(P ) f1
m2

(B) f1
d (D)

]]
and the deep tensor

factorization model is defined as:

min
P,B,D

∥∥AΩ

(
X −

[[
f1
m1

(P ) f1
m2

(B) f1
d (D)

]])∥∥2

F

+
∥∥AΩ

(
X −

[[
f1
m1

(P ) f1
m2

(B) f1
d (D)

]])∥∥2

F
+λ
(
‖Γm1‖2F + ‖Ψm2‖2F + ‖Θd‖2F

) (14)

where Ω and Ω denote the set of observed and
unobserved or unknown ternary association entries in
the association tensor X i.e., if ∀Xijk ∈ Ω, Xijk = 1;
∀Xijk ∈ Ω, Xijk = 0. Γm1

=
{
W

(1)
m1 , ...,W

(l)
m1 , b

(1)
m1 , ..., b

(l)
m1

}
,

Ψm2
=

{
W

(1)
m2 , ...,W

(l)
m2 , b

(1)
m2 , ..., b

(l)
m2

}
, Θd ={

W
(1)
d , ...,W

(l)
d , b

(1)
d , ..., b

(l)
d

}
are the parameters involved in

Eq.(11), Eq.(12) and Eq.(13).

C. Embedding Propagation Layer

GAT is a powerful neural architecture for learning with
graph, which can assign different attention scores to each
neighbor and learn the preferences of nodes adaptively. To
capture fine-grained features over similarity graphs, we aggre-
gate the neighborhood information by introducing multi-head
attention mechanism adopted in graph attention network.

The embedding propagation layers are motivated as adap-
tation layer of GNNs, which perform aggregation operations
based on the node’s neighborhoods. Let p ∈ Rfm , b ∈ Rfm

and d ∈ Rfd be the feature vectors of miRNAs and diseases,
where fm, fd are the feature dimensions for miRNAs and
diseases, the miRNA functional, sequence similarity matrix
can be MF ∈ RX×fm , MS ∈ RX×fm and disease semantic
similarity matrix DS ∈ RY×fd , where X , Y denote the num-
ber of miRNAs and diseases, respectively. For each similarity
graph, we perform self-attention on the nodes to compute
attention coefficients clij :

clij = a (W1hi‖W1hj) , j ∈ Ni (15)

where h = {p, b, d}, a (·) denotes a single-layer feed-
forward neural network which maps the input RK′ × RK′

to R, ‖ is the concatenation operation. W1 ∈ Rf×k is a
learnable weight matrix, which transforms input raw features
with dimension f into high-level features of dimension k
(which is set as 128 in this paper) for each node; Ni indicates
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Fig. 1. Overview of the Deep Tensor Factorization with Graph Attention Network. A) Data collection and preprocessing. B) GraphTF conducts graph attention
mechanism-based neighborhood information aggregation over miRNA functional similarity graph, miRNA sequence similarity graph and disease semantic
similarity graph, respectively. C) The learned latent features from Step B are put into a deep tensor factorization model for link prediction.

the neighborhoods of node i. Hereafter, we normalize the
coefficients across all choices of j using the softmax function:

αl
ij = softmax

(
clij
)

=
exp

(
clij
)∑

t∈Ni
exp

(
clit
) (16)

Following GAT [20], we apply the LeakyReLU nonlinearity
on clij and the coefficients αl

ij are then expressed as follows:

αl
ij =

exp
(
LeakyReLU

(
clij
))∑

t∈Ni

exp
(
LeakyReLU

(
clij
)) (17)

Then the neighborhood aggregation for node i can be
performed as:

hli = σ

∑
j∈Ni

αl
ijW1hj

 (18)

where σ (·) denotes the ReLU activation function.
Similar to Transformer [21], we extend our mechanism to

employ multi-head attention to stabilize the learning process
of self-attention. Specifically, with U attention heads executing
the transformation of Eq.(18), we concatenate the multi-head
features and obtain the output feature representation in the
attention layer l:

hli =
U

||
u=1

σ
(∑

j∈Ni

α
(l,u)
ij Wu

1 h
(l,u)
j

)
(19)

where ‖ is concatenation, α(l,u)
ij are normalized attention score

computed by the u-th head, and Wu
1 is the corresponding

linear transformation matrix.

Thereby, with the randomly initialized node embeddings
P (0), B(0) and D(0), the feature embedding module learns the
final node representation P (L), B(L) and D(L) by integrating
the neighborhood information with attention mechanism over
the similarity networks. The learned embeddings are then
taken as the input for the downstream GraphTF-based model
to make final association predictions.

D. Optimization for miRNA-miRNA-disease tensor reconstruc-
tion

After deriving the representation matrices P , B, D for
miRNA and disease, we can then reconstruct the miRNA-
miRNA-disease association tensor X̂ as follows:[[

Φl
m1

(
GAT t

m1

(
P (0)

))
Φl

m2

(
GAT t

m2

(
B(0)

))
Φl

d

(
GAT t

d

(
D(0)

))]]
(20)

where Φl
m1

(·), Φl
m2

(·) and Φl
d(·) represent the final feature

matrices of miRNA and disease after neural projection, re-
spectively. GAT t

m1

(
P (0)

)
, GAT t

m2

(
B(0)

)
and GAT t

d

(
D(0)

)
denote the learned feature matrices from GATs.

For the elements in X̂ , the higher Xijk is, the more likely
miRNA pair 〈mi,mj〉 is associated with disease dk, otherwise,
the less likely miRNA pair 〈mi,mj〉 is associated with disease
dk. We use mean square error to minimize the Frebious norm
of the difference between preference tensor X and label tensor
X̂ as the loss function of our model. The loss is formally
formulated as follows:

min
P,B,D

∥∥∥AΩ

(
X − X̂

)∥∥∥2

F
+
∥∥∥AΩ

(
X − X̂

)∥∥∥2

F

+λ
(
‖Γm1

‖2F + ‖Ψm2
‖2F + ‖Θd‖2F

) (21)

We tested our model on a machine equipped with one
NVIDIA 2060 GPU and one 2.90 GHz AMD Ryzen 7 4800H
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with Radeon Graphics CPU with 16GB memory. For GraphTF,
the time complexity is O

(
|V |FF ′ + |E|F ′ +X2Y

)
, where

F is the number of input features, F ′ is the number of output
features, |V | and |E| are the numbers of nodes and edges in
the graph, X , Y denote the number of miRNAs and diseases
in tensor factorization, respectively.

IV. EXPERIMENTS

A. Baselines

Currently, there are many outstanding tensor completion
methods for predicting triple associations in bioinformatics,
we take the following models as baselines. Noted that as they
are not developed for miRNA-miRNA disease associations
prediction, we only use the algorithms for comparison. The
baselines can be divided into two categories, i.e., traditional
tensor factorization model and machine learning-based mod-
els. CANDECOMP/PARAFAC(CP) [22]: A classical tensor
factorization model without any auxiliary information which
decomposes a tensor as a sum of rank-one tensors via alter-
nating least squares (ALS) rules. DrugCom [23]: A tensor-
based framework for computing drug combinations over mul-
tiple information of drugs and diseases. TDRC [5]: A tensor
decomposition method to predict multi-type miRNA-disease
associations by constraining the factor matrices using auxiliary
information of miRNAs and diseases. DeepSynergy [24]: A
deep learning approach for predicting drug combinations,
which combines the feature representation of drug combina-
tions and cancer cell line, and treats the prediction task as a
classification problem. DTF [8]: A deep tensor factorization
model integrating a tensor factorization method and a deep
neural network for predicting drug synergy.

B. Experimental Setup

To systematically evaluate the performance of GraphTF, we
conduct five-fold cross-validation experiments and compare
it with five state-of-the-art methods. The original observed
tensor is very sparse with many unobserved entries, to deal
with the imbalance of the positive and negative samples,
we randomly select the same size of negative samples as
positive samples from the missing entries of the association
tensor. Then the positive and negative samples are divided
into five parts. For every subset, the four parts of positive
and negative samples are used as training set, the rest one
part is treated as testing set. We apply grid search for
hyper-parameters fining and for each fold, embedding size
D is selected in {32, 64, 128, 256, 512}, projection layers L
is set from {1, 2, 3, 4}, the number of attention heads U is
selected from {1, 2, 3, 4}, the dropout ratio ρ is chosen in
{0.1, 0.2, 0.3, 0.4, 0.5}. We mainly choose metrics that are
typical for classification task: area under the receiver operator
characteristics curve (ROC-AUC), area under the precision
recall curve (PR-AUC).

In our model, the training epoch is set to 300 and the
parameters are optimized by Adam solver [25] with a learning
rate 0.001, the dropout ratio ρ is set to 0.4. We perform neigh-
borhood aggregation via one-layer-GAT with 3 attention heads

and use three-layer MLP to enhance feature representation.
Specifically, we randomly initialize the features which satisfy
the standard normal distribution and set the embedding size D
for miRNAs and diseases as 128.

C. Experimental Results

We compare our model with the five baseline methods
as shown in Figure 2. The sharp decrease of precision in
the AUPR curve is probably because there is outlier in our
constructed data. From the results, we can see: (1) GraphTF
outperforms in both AUC and AUPR compared with the
other five computational methods. This may attribute to the
attention mechanism in GAT, which not only preserves the
topology of similarity networks but also considers different
weights of the neighborhood nodes. (2) Compared with CP,
TDRC integrates miRNA functional and disease semantic
similarity to constrain model optimization, while DrugCom
merges miRNA functional similarity, miRNA sequence sim-
ilarity and disease semantic similarity for training, which
proves that adding multi-source information for tensor-based
models can effectively improve the prediction performance.
(3) DrugCom outperforms other deep learning models, which
may be because DrugCom captures the consensus information
between multiple auxiliary data and tensor to constrain factors,
while the deep learning models simply take multiple data
as input features. (4) For GraphTF, DeepSynergy and DTF,
the GAT used in GraphTF can more efficiently capture the
complex nonlinear relations well on both miRNA network and
disease network than simple deep neural network.

Fig. 2. (a)The ROC curve of GraphTF and compared methods. (b) The AUPR
curve of GraphTF and compared methods.

D. Robustness of GraphTF

To verify the stability of GraphTF, we perform comparison
experiments under different size of negative samples and
known links, respectively. First, we randomly generate the
negative samples with a size of [n, 2n, 4n, 6n, 8n, 10n] to
make comparison. The results are averaged over ten different
negative samples of the same size. As Figure 3 shows, with the
size of negative samples increasing, the AUPR of all methods
decrease at a certain degree. However, the drop rate of our
GraphTF is significantly lower than other methods, which
indicates GraphTF is robust to imbalanced data.

To further test the robustness of GraphTF, we randomly
remove the known triple links by 5%, 10%, 20%, 30% and
40%, i.e., the known miRNA-miRNA-disease associations are
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Fig. 3. The AUPR values with different negative sample sizes.

decreased to 14710, 13969, 10839 and 9291, the unknown
triple associations are 16258, 16999, 20129 and 21677. From
Table I, all the methods perform steadily under different
data distributions, and GraphTF still outperforms all other
algorithms, which may because of the advantages of sparse
tensor factorization. In summary, GraphTF is resilient to both
negative sample size and missing data. Therefore, it is more
generalizable for real-world applications.

TABLE I
THE AUPR VALUES FOR ALL APPROACHES WHEN REMOVING

ASSOCIATION DATA AT RATE OF 5%, 10%, 20%, 30% AND 40%
COMPARED WITH ORIGINAL RESULTS.

Ratio CP TDRC DeepSynergy DTF DrugCom GraphTF
0% 0.9301 0.9217 0.9233 0.9192 0.9313 0.9651
5% 0.9326 0.9262 0.9189 0.9355 0.9355 0.9653
10% 0.9305 0.9258 0.9194 0.9563 0.9563 0.9638
20% 0.9386 0.9170 0.9203 0.9483 0.9483 0.9665
30% 0.9316 0.9202 0.9185 0.9593 0.9593 0.9649
40% 0.9388 0.9206 0.9193 0.9514 0.9514 0.9635

E. Ablation Study

To analyze the importance of multi-source data, we compare
the results of our model leveraging different similarity graphs.
Specifically, GraphTF-nseq means we only use miRNA func-
tional similarity to learn miRNA features, GraphTF-nfunc de-
notes we only use miRNA sequence similarity to learn miRNA
features, and GraphTF learns miRNA features exploiting both
miRNA functional and sequence similarity graphs. As shown
in Table II, GraphTF achieves the best performance using
all multi-source data. Moreover, we can find that miRNA
functional similarity contributes a little more than miRNA
sequence similarity to GraphTF.

TABLE II
PERFORMANCE OF GRAPHTF WITH DIFFERENT SIMILARITY DATA.

Models GraphTF-nseq GraphTF-nfunc GraphTF
AUC 0.9676 0.9660 0.9731

AUPR 0.9600 0.9586 0.9651

F. Parameters Analysis
In this section, we explore the impact of four crucial hyper-

parameters for GraphTF. The results are shown in Figure 4.
• Effect of embedding size D. In this experiment, we

fixed other parameters, where the neural projection layer
L = 3, number of attention heads U = 3, dropout
ratio ρ = 0.4, and changed the embedding size in
{32, 64, 128, 256, 512}. From Figure 4(a), we can see that
different embedding sizes would lead to different final
results. A large size of embedding may incur overfitting
problem and a small size of embedding may lead to
underfitting. When D = 128, GraphTF achieves the
best performance, which indicates that our model exploits
much information when the embedding size is set as 128.

• Effect of neural projection layer L. The neural projection
layers defined in Eq.(11), Eq.(12), Eq.(13) are adopted to
enhance the learned embeddings of miRNAs and disease
from GAT. We fixed other parameters and performed the
experiments for L = {1, 2, 3, 4} situations. Figure 4(b)
shows that GraphTF achieves a peak with L = 3 and
as the number of layers increases, the performance of
GraphTF goes down. This may because of overfitting
problem caused by information loss.

• Effect of attention heads U . Multi-head attention can
jointly capture information from different subspaces. In
our comparison, we keep all other parameters fixed and
change the number of attention heads in {1, 2, 3, 4}.
Figure 4(c) indicates that with the increase number of
attention heads, the performance of GraphTF first im-
proves and reaches a peak with U = 3 then decreases,
which indicates that a proper number of attention heads
can enhance the model performance.

• Effect of dropout ratio ρ. Dropout is an effective module
in deep learning model to avoid overfitting. From the
results in Figure 4(d), we can see that dropout can
significantly help improve the performance of GraphTF.
We choose ρ = 0.4 to achieve the best AUC.

G. Case Studies
To demonstrate the capability of GraphTF to predict novel

miRNA-miRNA-disease associations, we carried out case
studies on two common human complex diseases Breast Neo-
plasms and Lung Neoplasms. In particular, all known miRNA-
miRNA-disease associations as training set for GraphTF to
make predictions, and the unknown associations are treated
as candidate set for validation. For a given triple association
< m1, m2, d >, we validated it by verifying the decom-
posed pairwise associations i.e., < m1,m2 >, < m1, d >,
< m2, d >. In particular, we verified the top 20 predic-
tions with the prominent miRNA-disease association database
dbDEMC 2.0 [26], and validated the miRNA-miRNA pairs
by enrichment analysis. Table III, IV show the top-20 Breast
Neoplasms and Lung Neoplasms related miRNA-miRNA pairs
predicted by GraphTF, from which we can see that most
disease related miRNA pairs are confirmed by dbDEMC or
literature.
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Fig. 4. (a) The performance on different embedding size D; (b) Comparison
of predicted performance with different projection layers L; (c) Impact of
number of attention heads U ; (d) Influence of dropout ratio ρ.

TABLE III
TOP-20 BREAST NEOPLASMS RELATED MIRNA PAIRS AND THE

CONFIRMATION FOR THEIR ASSOCIATIONS BY DBDEMC 2.0 AND
LITERATURES. MIRNA I AND MIRNA J IN THE SAME ROW FORM A

DISEASE-RELATED MIRNA PAIR.

miRNA i Evidence miRNA j Evidence
hsa-mir-520h dbDEMC hsa-mir-302d dbDEMC
hsa-mir-520h dbDEMC hsa-mir-323b dbDEMC
hsa-mir-323a dbDEMC hsa-mir-323b dbDEMC
hsa-mir-520h dbDEMC hsa-mir-409 PMID: 26631969
hsa-mir-323a dbDEMC hsa-mir-302d dbDEMC
hsa-mir-323a dbDEMC hsa-mir-181d dbDEMC
hsa-mir-323a dbDEMC hsa-mir-409 PMID: 26631969
hsa-mir-520f unconfirmed hsa-mir-302d dbDEMC
hsa-mir-323a dbDEMC hsa-mir-509-2 PMID: 25659578
hsa-mir-382 PMID: 31635836 hsa-mir-302d dbDEMC
hsa-mir-520h dbDEMC hsa-mir-509-2 PMID: 25659578
hsa-mir-382 PMID: 31635836 hsa-mir-323b dbDEMC
hsa-mir-382 PMID: 31635836 hsa-mir-181d dbDEMC
hsa-mir-519d dbDEMC hsa-mir-323b dbDEMC
hsa-mir-323a dbDEMC hsa-mir-487b unconfirmed
hsa-mir-519d dbDEMC hsa-mir-181d dbDEMC
hsa-mir-520h dbDEMC hsa-mir-181d dbDEMC
hsa-mir-382 PMID: 31635836 hsa-mir-409 PMID: 26631969
hsa-mir-302d dbDEMC hsa-mir-409 PMID: 26631969
hsa-mir-520h dbDEMC hsa-mir-1302-2 unconfirmed

To validate the biological significance of the predicted
miRNA pairs, we perform the GO and KEGG enrichment
analysis for the gene set which contains common genes among
each miRNA pair and disease. From Table V, we find that
most gene sets of the top-20 predicted triple associations
are enriched either in GO-BP terms or KEGG pathway for
Breast Neoplasms and Lung Neoplasms, respectively. Take
<hsa-mir-1-1, hsa-mir-9-2> pair related to Lung Neoplasms

TABLE IV
TOP-20 LUNG NEOPLASMS RELATED MIRNA PAIRS AND THE

CONFIRMATION FOR THEIR ASSOCIATION BY DBDEMC 2.0 AND
LITERATURES. MIRNA I AND MIRNA J IN THE SAME ROW FORM A

DISEASE-RELATED MIRNA PAIR.

miRNA i Evidence miRNA j Evidence
hsa-mir-1-1 dbDEMC hsa-mir-9-2 dbDEMC
hsa-mir-29c dbDEMC hsa-mir-19a dbDEMC

hsa-mir-29b-2 dbDEMC hsa-mir-19a dbDEMC
hsa-mir-29c dbDEMC hsa-mir-1-1 dbDEMC

hsa-mir-29b-2 dbDEMC hsa-mir-19b-1 dbDEMC
hsa-mir-29c dbDEMC hsa-mir-19b-1 dbDEMC
hsa-mir-222 dbDEMC hsa-mir-1-1 dbDEMC
hsa-mir-520h dbDEMC hsa-mir-302d dbDEMC
hsa-mir-29b-2 dbDEMC hsa-mir-9-2 dbDEMC
hsa-mir-323a dbDEMC hsa-mir-181d PMID: 30548184
hsa-mir-29b-2 dbDEMC hsa-mir-1-1 dbDEMC
hsa-mir-519d dbDEMC hsa-mir-181d PMID: 30548184
hsa-mir-17 dbDEMC hsa-mir-19b-1 dbDEMC

hsa-mir-19b-1 dbDEMC hsa-mir-9-2 dbDEMC
hsa-mir-17 dbDEMC hsa-mir-19a dbDEMC

hsa-mir-382 dbDEMC hsa-mir-181d PMID: 30548184
hsa-mir-222 dbDEMC hsa-mir-19a dbDEMC
hsa-mir-17 dbDEMC hsa-mir-1-1 dbDEMC

hsa-mir-29b-1 dbDEMC hsa-mir-1-1 dbDEMC
hsa-mir-382 dbDEMC hsa-mir-302d dbDEMC

as an example, we enumerate the significant GO-BP terms
and KEGG pathways involved in this pair (see Figure 5). The
majority of GO-BP terms are related to the cellular component,
molecular function, and biological process, illustrating <hsa-
mir-1-1, hsa-mir-9-2> pair is related to the normal develop-
ment and complex disease. Furthermore, the ‘Human T-cell
leukemia virus 1 infection’ and ‘MicroRNAs in cancer’ are the
most significant KEGG pathways, which are closely associated
with lung adenocarcinoma. Research [27] also demonstrated
that miR-1 and miR-9 collectively impinged the epithelial-
mesenchymal transition process. All these results show the
synergism between hsa-mir-1-1 and hsa-mir-9-2, which proves
the effectiveness of GraphTF in discovering disease-related
miRNA-miRNA pairs.

TABLE V
THE ENRICHMENT RESULTS OF PREDICTED TOP-20 MIRNA PAIRS FOR

BREAST NEOPLASMS AND LUNG NEOPLASMS.

GO/KEGG Confirmed Unconfirmed
Breast Neoplasms 16 4
Lung Neoplasms 18 2

V. CONCLUSION

Identification of potential disease-associated miRNA-
miRNA pairs is a challenging but promising strategy for
comprehensively understanding the pathogenesis of human
diseases and can be a great alternative for disease treat-
ment. In this paper, we propose a novel tensor-based model
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Fig. 5. (a) The GO-BP terms (top 20) of miRNA pair <hsa-mir-1-1, hsa-mir-
9-2> related to Lung Neoplasms. (b) The KEGG pathways of <hsa-mir-1-1,
hsa-mir-9-2> related to Lung Neoplasms.

GraphTF, which integrates a deep learning module for pre-
dicting miRNA-miRNA-disease ternary associations. First, we
extract the features of miRNAs and diseases via a multi-
head attention mechanism aggregating neighborhood infor-
mation over multiple similarity network, then we take the
obtained feature matrices as factor matrices decomposed from
tensor to reconstruct the association tensor, and finally make
predictions. Different from traditional tensor factorization
framework, GraphTF exploits graph attention network to ex-
plore high-order nonlinear relationships between miRNAs and
diseases. The experimental results through five-fold cross-
validation show the effectiveness and robustness of GraphTF.
Case studies also verify the powerful predictive ability of
GraphTF in discovering disease-related miRNA pairs.

In the future, we plan to integrate more biological auxiliary
information and explore more efficient methods to fuse the
learned feature. More effort will be put into investigating
other negative sample approaches for improving the model
performance.
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