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Abstract
Predicting the interactions between microRNAs (miRNAs) and target genes is of great significance for understanding the 
regulatory mechanism of miRNA and treating complex diseases. The emergence of large-scale, heterogeneous biological 
networks has offered unprecedented opportunities for revealing miRNA-associated target genes. However, there are still 
some limitations about automatically learn the feature information of the network in the existing methods. Since network 
representation learning can self-adaptively capture structure information of the network, we propose a framework based 
on heterogeneous network representation, MDCNN (Metapath-Based Deep Convolutional Neural Network), to predict the 
associations between miRNAs and target genes. MDCNN samples the paths between the node pairs in the form of meta-path 
based on the heterogeneous information network (HIN) about miRNAs and target genes. Then the node feature and the path 
feature which is learned by the Deep Convolutional Neural Network (DCNN) are spliced together as the representation of 
the miRNA-target gene, to predict the miRNA-target gene interactions. The experiment results indicate that the performance 
of MDCNN outperforms other methods in multiple validation metrics by fivefold cross validation. We set an ablation study 
to identify the necessity of miRNA similarity and target gene similarity for improving the prediction ability of MDCNN. 
The case studies on hsa-miR-26b-5p and CDKN1A further demonstrates that MDCNN can successfully predict potential 
miRNA-target gene interactions.
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1 Introduction

MicroRNAs (miRNAs) are a kind of endogenous small 
RNAs with about 20 nucleotides [1]. As one of the most 
important components in cells, miRNA can cause gene 
degradation or inhibit gene translation by complementary 
pairing with 3’UTRs of mRNA [2]. Biological experi-
ments have confirmed that miRNAs are widely involved 
in a large number of cell processes, and are closely related 
to the occurrence and development of diseases [3, 4]. Up 
to now, there are 2,656 mature human miRNAs in miR-
base [5]. Relevant studies have shown that such a small 
amount of miRNA regulates nearly one-third of human 
genes. Therefore, the prediction of miRNA-target inter-
action (MTI) is of great significance for understanding 
miRNA function and regulatory mechanism, preventing 
and treating human diseases.

In general, a miRNA can regulate multiple genes, and a 
gene can also be regulated by multiple miRNAs. Biologi-
cal experimental methods can directly identify the exist-
ence of genes, but they are costly, time-consuming and 
unable to achieve a large scale of MTIs. Fortunately, with 
the rapid development of computing technology, research-
ers have proposed computational prediction methods for 
the MTI, many of which have been proved to be effective 
in promoting the design of biological experiments.

Early researchers proposed algorithms based on seed 
matching, thermal stability, species conservatism, and 
other principles [6], such as TargetScan [7], MiRanda [8], 
and PITA [9]. Although these methods have a low data 
dependency, due to the complex regulatory relationship 
between miRNA and its target genes, this kind of algo-
rithm has a high false positive. To improve the accuracy of 
MTI, many methods based on machine learning have been 
proposed, such as ensemble learning [10], support vector 
machine (SVM) [11] and so on. MiTarget [12] designed 
a location-based feature, combining features based on 
structural and thermodynamics, and SVM was proposed 
to build miRNA-target classifiers. MiREE [13] believed 
the joint optimization of the Ab-Initio and machine learn-
ing parts can lead to better results. It generated a set of 
candidate sites upon a genetic algorithmic approach and 
the SVM learning module evaluated the influence of 
microRNA on target genes. Due to the development of 
crosslinking ligation and sequencing of hybrids (CLASH) 
experiments, new features of miRNA target sites may be 
inferred. TarPmiR [14] selected 13 important features 
from 18 potential features and predicted the target sites 
of miRNA based on the random forest method. In gen-
eral, methods based on traditional machine learning can 
solve the problem of false positives to a certain extent, 
but these methods inevitably require manual extraction 

of feature data. Manual feature extraction is very time-
consuming, and the constructed features may not be suit-
able for machine learning.

In recent years, with the increase of data and computing 
power, amounts of methods based on network representa-
tion learning have been proposed which could solve the 
problem of manual feature extraction. This type of method 
aims to learn low-dimensional representations of nodes in 
the network which retains the structure and inherent property 
information of the graph, and has been successfully applied 
in many domains, such as social network, recommendation 
system, natural language processing, and so on [15]. In the 
beginning, some approaches learn the representation of net-
work nodes by randomly walking over homogeneous net-
works, such as DeepWalk [16], LINE [17], node2vec [18], 
GraRep [19]. Later, considering that most networks are het-
erogeneous, some methods for heterogeneous networks were 
proposed, such as metapath2vec [20], HIN2vec [21], and so 
on. At present, the association prediction methods based on 
network embedding have been successfully applied in the 
field of bioinformatics [22, 23] and computational pharma-
cology [24–26]. For example, IMTRBM [27] constructed 
a weighted miRNA-target bipartite network based on the 
prediction results of multiple single classification algo-
rithms and applied Restricted Boltzmann Machine (RBM) 
to predict MTIs. SG-LSTM-FRAME [28] used Doc2vec 
to construct the network, then role2vec was used to learn 
the characteristics of nodes in the network. Finally, a Long 
Short-Term Memory (LSTM) module was trained to predict 
MTIs. BIRWMDA [29] first integrated a variety of similarity 
networks to obtain disease network and miRNA network and 
then carried out a bi-random walk on the network to pre-
dict miRNA-disease association. IDDkin [30] used a graph 
convolution network (GCN) to fuse neighbor information 
into heterogeneous networks. Then, combined with graph 
attention network (GAT) and adaptive weighting to predict 
kinase inhibitor association. The methods based on network 
representation learning can adaptively learn the information 
of network nodes, which not only solve the shortcomings 
of manual data extraction but also improve the prediction 
performance. However, most of these methods learn the rep-
resentation of nodes separately and ignore the path informa-
tion between node pairs.

This paper, we proposed an end-to-end deep learning 
framework, called MDCNN, to predict the MTIs. Consid-
ering that the meta-path can effectively represent the rela-
tionship between different types of nodes in the network 
and different meta-paths contain different information, we 
combined the representation of the node pair and path as 
the embedding of the miRNA-target gene by learning the 
representation of the meta-path between pairs of nodes. The 
MLP was used to predict the miRNA-target gene interac-
tions. The evaluation results show that MDCNN is superior 
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to some MTI algorithms and other algorithms based on net-
work embedding in fivefold cross-validation. Besides, the 
case studies further show the powerful ability of MDCNN 
in predicting MTIs.

2  Preliminary

Before introducing our method, we give the notations we 
used in our paper in Table 1, and the definitions related to 
our method as follows:

A heterogeneous information network (HIN) is an infor-
mation network which contains many kinds of objects or 
links.

Definition 2.1 Heterogeneous Information Network [31]. 
A HIN is a graph G = (V ,E) with an entity type mapping 
function � ∶ V → A and a link type mapping function 
� ∶ E → R . A and R , respectively denotes the predefined 
entity set and link type set, where |A| + |R| > 2.

Example In this paper, we construct a HIN, including 
two types of objects (miRNA and target) and three types 
of relationships (miRNA-miRNA, target-target, and 
miRNA-target).

Due to the complexity of the HIN, meta-paths are used to 
describe the semantic relations between two nodes.

Definition 2.2 Meta-path [31]. A meta-path p is defined 

as a path in the form of A1

R1

→ A2

R2

→ ⋯

Rl

→ Al+1 (abbrevi-
ated as A1A2 …Al+1 ), which describes a composite relation 

R = R1◦R2◦⋯◦Rl between object A1 and Al+1 , where ◦ 
denotes the composition operator on relations.

Example In miRNA-target HIN, two nodes can be connected 
by multiple meta-paths, e.g., miRNA-target-miRNA (MTM) 
and target-miRNA-target (TMT). Each meta-path has its 
semantics. For example, the MTM means two miRNAs co-
regulate the same target while TMT means two targets are 
regulated by the same miRNA.

3  Materials and Method

3.1  Datasets

The miRNA sequence information was download from 
miRbase [5] and we extracted 2,656 mature miRNAs as 
experimental data. We downloaded 509,664 association data 
between 17,929 genes from HumanNet v2 [32]. And the 
MTIs are downloaded from the known experimental data-
base, mirTarBase [33]. After unioning and removing dupli-
cates, we got 237,574 associations including 2547 miRNAs 
and 9096 target genes.

3.2  Method Overview

In our method, we first generated the miRNA similarity 
network by calculating the sequence similarity. Meanwhile, 
we generated the target gene similarity network from the 
database. The miRNA-target gene HIN is composed of the 
miRNA-miRNA network, target-target network, and known 
miRNA-target gene association network. To solve the prob-
lem that the existing methods ignore the path information 
between node pairs, we introduced meta-paths to capture 
node information in HIN. We gathered paths with different 
lengths between miRNAs and target genes, extracted the 
important information of the paths by a DCNN, and learned 
the path representation. Finally, the combination of miRNA 
representation, target gene representation, and path represen-
tation was used as the input of MLP to predict the MTIs. The 
overall workflow of MDCNN is depicted in Fig. 1.

3.3  Construction of the miRNA‑Target 
Heterogeneous Network

The existing network-based methods tend to focus on the 
intrinsic characteristics of miRNAs and target genes while 
ignoring the heterogeneous information of biological net-
works. The structure and semantic information of HIN can 
help us obtain richer node information and improve the accu-
racy of the model. Hence, we integrate miRNA sequence 
data, target similarity data, and miRNA-target interaction 
data to construct the miRNA-target gene HIN.

Table 1  Notations and explanations

Notation Definition

G = (V ,E) A heterogeneous information network
V =

�
M

⋃
T
�

The set of two types of nodes
E = {EM ∪ ET ∪ EA} The set of three types of links
P Meta-path
h Initial node feature
e Projected node feature
L Path length set
rp Feature embedding of path p
RM Path embedding matrix
f The output of the convolutional layer
g The output of the pooling layer
s The output of the fully connected layer
�
ℙ

Path feature
Z The final embedding representation
ŷ The predicted label
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3.3.1  MiRNA Similarity Network

We obtain the sequence information of miRNAs from 
miRbase [5] and calculate the similarity of miRNAs by the 
Needleman Wunsch algorithm [34]. The Needleman–Wun-
sch algorithm uses the principle of dynamic program-
ming to match the sequences globally and optimizes the 
measurement to determine the similarity between the two 
miRNA sequences. However, there may be some unknown 
noise data in biological data, which will affect the experi-
mental results. Therefore, for each miRNA, the top � miR-
NAs with similarity scores are selected as an association to 
improve the reliability of the miRNA similarity network. 
Hence, let M be the set of miRNAs, and the edges EM in 
the miRNA network could be defined as follow:

where rankmi

(
mj

)
≤ � represents miRNA mj is the top � 

similarity of miRNA mi , � is a hyper-parameter.

3.3.2  Target Similarity Network

We download the human gene functional data from 
HumanNet v2 [32] to construct the target gene similarity 
network. Each interaction in HumanNet v2 represents the 
probability of interaction between two genes. Let T  be the 
set of genes, the edges ET in the target gene network could 
be defined as follow:

(1)EM =
{(

mi,mj

)
|rankmi

(
mj

)
≤ �

}
,
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Fig. 1  The overview of MDCNN. Step 1: construct the heterogene-
ous network by combining the miRNA network, the target network, 
and the miRNA-target pair network. Step 2: learn the representation 

of nodes and paths based on different path lengths. Step 3: predict the 
interaction of miRNAs and target genes
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where rankti
(
tj
)
≤ � represents gene tj is the top � similarity 

of gene ti , and avg(LLS) is the average score of the gene 
functional similarity.

3.3.3  MiRNA‑Target Interaction Network

The edges EA in the miRNA-target network are obtained from 
the known experimental database, mirTarBase [33], which was 
defined as follow:

where 
(
mi, tj

)
 are the association of experimental verification 

in the database.
Finally, we integrate the miRNA similarity network, target 

similarity network, and miRNA-target interaction network to 
construct a HIN of miRNAs and target genes. The network 
could be represented as G = (V ,E) , where V = {M ∪ T} and 
E = {EM ∪ ET ∪ EA} . All the edges in the HIN represent the 
close relationship between nodes, and the weights are 1.

3.4  Representation Learning of Heterogeneous 
Network

In this part, we use the HIN constructed in the previous chapter 
as input to establish a deep learning model, which does not 
need to manually extract the representation of network nodes. 
Considering that most methods only utilize the structural infor-
mation of the network and ignore the semantic information 
between nodes, we connect network nodes in the form of meta-
paths and then use deep convolutional neural networks to learn 
the effective information in the paths.

3.4.1  Node Embedding

A large amount of network-based methods use one-hot encod-
ing for the embedding of nodes. However, one-hot coding 
requires each category to be independent of each other, and 
its dimension depends on the size of the dataset. Thus, one-hot 
coding is not a wise choice in our research, in which miRNA-
target is a complex network. Consequently, we use a transfor-
mation matrix to convert this one-hot embedding into a dense 
feature. The specific operation is as follows:

where hi ∈ ℝ
(|M|+|T|)×1 is the original features of node i and 

ei ∈ ℝ
d×1 ( d : embedding size of nodes) is the projected fea-

tures of node i . X ∈ ℝ
d×(|M|+|T|) is the transformation matrix 

to project nodes into a low dimensional continuous vector 
space.

(2)
ET =

{(
ti, tj

)
|rankti

(
tj
)
≤ 𝛿 and LLS

(
ti, tj

)
> avg(LLS)

}
,

(3)EA =
{(

mi, tj
)
|mi ∈ M andtj ∈ T

}
,

(4)ei = X ⋅ hi,

3.4.2  Paths Sampling

We regard meta-paths between miRNAs and target genes as 
contexts for MTIs and assume they contain useful semantic 
information for the prediction of MTI. Therefore, we collect 
meta-paths between all miRNA-target pairs with different 
lengths. In this paper, we only concern with the regulation 
of miRNAs on target genes. So only meta-paths from miR-
NAs to target genes are selected in this paper. Table 2 shows 
meta-paths under different lengths.

Due to the sparsity and complexity of miRNA-target 
HIN, not all node pairs have all types of meta-paths. There-
fore, we consider merging paths with the same length into 
one set. Let L =

{
l1, l2,… , lq

}
 denotes the set of different 

lengths. For each length l ∈ L , we collect a set of paths Pl 
and ℙ =

{
Pl1 ,Pl2 ,… ,Plq

}
 is the set of all paths.

3.4.3  Path Embedding

The information in the path is mainly reflected in the 
arrangement of the nodes. Therefore, we splice the node 
embedding vectors together as the representation of the path. 
Given a path p = A1 → A2 → ⋯ → Al+1 , the embedding 
could be shown as follow:

where rp ∈ ℝ
((l+1)⋅d)×1 is the feature embedding of path p , 

and ∥ denotes the concatenate operation.
Then the paths of the same length are arranged in turn 

to form the path embedding matrix. Given a path set Pl , the 
matrix is formulated as follow:

where RMl ∈ ℝ
K×((l+1)⋅d) , K  is a her-parameter which 

denotes the size of the path set Pl.

3.4.4  Path Feature Fusion

Convolutional Neural Networks (CNN) can automatically 
extract features from basic data, which is a very useful fea-
ture fusion method. Study [35] shows that deep architectures 
is usually better than shallow architecture in dealing with 
complex learning problems. Hence, we apply Deep 

(5)rp = e1 ∥ e2 ∥ ⋯ ∥ el+1

(6)RMl =
[
r1, r2,… , rK

]T
,

Table 2  The description of the meta-path

Index Meta-path Length Index Meta-path Length

P1 M → T 1 P5 M → M → T → T 3
P2 M → T → T 2 P6 M → M → M → T 3
P3 M → M → T 2 P7 M → T → T → T 3
P4 M → T → M → T 3 … … …
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Convolutional Neural Networks (DCNN) to fuse features in 
path embedding matrix. The DCNN contains multiple con-
volutional layers and pooling layers. The output of the con-
volutional layer at location (x, y) in the j th feature tensor of 
i th layer is noted as f x,y

i,j
 and formally expressed according 

to:

where �kh,kw

i,j,k
 denotes the weight of the j th feature map of the 

i th convolutional layer, �i,j is the bias parameter, KHi and 
KWi are the size of the filter matrix, c is the index of the 
feature map. ReLU is the activation function, 
ReLU(x) = max(0, x).

To avoid over-fitting, the average-pooling operator is used 
for each feature map. The output of the average-pooling layer 
noted as gx,y

i,j
 , is formulated as follow:

where PHi and PWi are the height and width of the pooling 
matrix, respectively.

After alternatively stacking multiple convolutional layers 
and pooling layers, a fully connected layer is applied sub-
sequently to transform the extracted feature map into a one-
dimensional array. Finally, the fused features from different 
path embedding matrices are concatenated as the features of 
meta-paths set ℙ =

{
Pl1 ,Pl2 ,… ,Plq

}
 . The feature of paths, 

�
ℙ
 , is formulated as follow:

where sl is the output of l th path embedding matrix after the 
fully connected layer.

3.5  Prediction

We combine the features of miRNAi , target j, and paths 
between i and j , and then use the MLP to make the final 
relationship prediction. Let Z denotes the embedding after 
combination,

The details of the MLP are as follows:

(7)f
x,y

i,j
= ReLU

�
�i,j +

∑
c

CHi−1∑
ch1=0

CWi−1∑
cw1=0

�ch,cw

i,j,c
⋅ f

x+ch,y+cw

(i−1)c

�
,

(8)g
x,y

i,j
=
∑
c

��
PHi−1∑
ph1=0

PWi−1∑
pw1=0

f
x+ph,y+pw

(i−1)c

�
∕
�
PHi ⋅ PWi

�
�
,

(9)�
ℙ
= s1 ∥ s2 ∥ ⋯ ∥ sq,

(10)Z = ei ∥ �
ℙ
∥ ej.

(11)�1 = ReLU
(
W1 ⋅ Z + b1

)
,

(12)�i = ReLU
(
Wi ⋅ �i−1 + bi

)
(i = 2,… ,N)

where W  and b are, respectively, represented the weight 
matrix and bias of the network layer, � denotes the activa-
tion function used by the network layers, N is the number 
of layers, and ŷ represents the label predicted by our model.

3.6  Objective Function

Cross-entropy is a common loss function of the classification 
problem. We use the cross-entropy loss as the objective func-
tion to train our model:

where Y  refers to the training set, and y denotes the truth 
label. In this paper, we appeal to Adaptive Moment Estima-
tion (Adam) [36] to minimize the total loss.

4  Results and Discussion

4.1  Experiment Settings

We applied fivefold cross-validation to evaluate the perfor-
mance of the miRNA target gene relationship prediction 
model. Specifically, the data is randomly divided into five 
parts, one of which is selected as the test samples each time, 
and the remaining parts are used as the training samples to 
train the model. Calculate the average result of 5 folds and 
use it as the performance index of the model under fivefold 
cross-validation. In the experiment, known miRNA target gene 
association data are considered as positive samples. Since the 
unknown interactions are far more than the known interac-
tions, we randomly select unassociated samples as negative 
samples with an equal number of positive samples in both 
the training and testing phase. We set the dimension d for 
path from {4,8, 16,32,64,128,256} , the length set L from 
{{2}, {3}, {2,3}, {2,3, 4}} , the threshold of similarity network 
� from {5,10,20,30,40} , the number of layers from {1,2, 3,4} , 
the dimension of each layer in MLP is {128,64,1} , the path 
number K is 10, and the learning rate of Adam is 0.001. True 
positive (TP) and true negative (TN) represent the number 
of positive samples and negative samples correctly identified, 
respectively. False positive (FP) and false negative (FN) denote 
the number of positive samples and negative samples misi-
dentified, respectively. The ROC curves are drawn by plotting 
the true positive rate (TPR) and the false positive rate (FPR), 
which are calculated as follows:

(13)ŷ = sigmoid
(
WN ⋅ 𝜇N−1 + bN

)
,

(14)Loss = −
Y∑
i=1

y(i)logŷ(i) +
�
1 − y(i)

�
log

�
1 − ŷ(i)

�
,

(15)TPR =
TP

TP+FN
,
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The area under the receiver operating characteristics (ROC) 
curve (AUC) is used to evaluate the overall performance of 
the methods. Further, the area under the precision-recall (PR) 
curve (AUPR), the precision, the recall, and the F1 score are 
also shown in the form of tables calculated as follows:

(16)FPR =
FP

TN+FP
,

(17)Precision =
TP

(TP+FP)
,

(18)Recall =
TP

(TP+FN)
,

(19)F1 score = 2 ⋅
precision⋅recall

(precision+recall)
.

4.2  Comparison with Other Methods

For comparison, we compare our approach with those in the 
field of bioinformatics, computational pharmacology, and 
traditional representation learning methods. In the experi-
ment, all the comparison methods are tested on our data and 
adjusted to their best parameters.

Figure 2 shows the ROC curves of MDCNN, SG-LSTM 
[28], BIRWMDA [29], IDDkin [30], DeepWalk [16], 
LINE [17], GraRep [19] obtained with fivefold cross-
validation, respectively. As shown in Fig. 2, the AUC of 
MDCNN is 0.9096, and the AUC of other comparison 
methods are 0.8572, 0.8494, 0.8585, 0.8247, 0.8390, and 
0.8539, respectively. The AUPR further evaluates the over-
all performance of the model which is shown in Table 3. 
From Table 3, the AUPR of MDCNN is 0.9143 which is 
higher than other methods [SG-LSTM (AUPR = 0.8385), 
BIRWMDA (AUPR = 0.8537), IDDkin (AUPR = 0.8566), 
LINE (AUPR = 0.8154), DeepWalk (AUPR = 0.8079), and 
GraRep (AUPR = 0.8375)]. More specifically, compared 
with the second-ranked method IDDkin, the performance 
of MDCNN is 5.77% higher than it. Subsequently, we com-
pare the precision, recall, and F1 scores of the top 10%, top 
20% and top 50% prediction results. Since recall in the case 
of the top 50% are the same as those in the case of F1 score 
and precision, only the recall value in the case of top 50% 
is shown here. As shown in Table 3, the recall at top 50% of 
MDCNN is 0.8326 and the precision, recall and F1 scores 
at top 10% and top 20% of MDCNN are 0.9730, 0.1946, 
0.3244, 0.9725, 0.2890 and 0.5557, respectively. Compared 
with other methods, MDCNN is the best in all evaluation 
metrics, indicating that MDCNN achieves the best perfor-
mance among these competing algorithms.

Three reasons may explain the superiority of MDCNN. 
First, MDCNN takes into account the attribute information 
of miRNA and gene, such as sequence information and 
functional similarity information, and constructs a more 
reliable heterogeneous information network of the miRNA 
target gene. Second, using meta-paths, the intermediate 
nodes are used as bridges to connect miRNAs and tar-
get genes which fully capture the structure and semantic Fig. 2  The ROC curves of comparison methods

Table 3  The performance of 
MDCNN and other models 
using multiple evaluation 
metrics

Method SG-LSTM BIRWMDA IDDkin DeepWalk LINE GraRep MDCNN

AUPR 0.8385 0.8520 0.8566 0.8079 0.8154 0.8375 0.9143
Recall 0.7730 0.7648 0.7742 0.7414 0.7543 0.7692 0.8326
Precision (top 10%) 0.9229 0.9723 0.9565 0.9044 0.8989 0.9251 0.9730
Recall (top 10%) 0.1846 0.1945 0.1913 0.1809 0.1798 0.1850 0.1946
F1 score (top 10%) 0.3076 0.3241 0.3189 0.3015 0.2996 0.3084 0.3244
Precision (top 20%) 0.8919 0.9219 0.9161 0.8651 0.8718 0.8937 0.9725
Recall (top 20%) 0.3568 0.3688 0.3665 0.3460 0.3487 0.3575 0.3890
F1 score (top 20%) 0.5097 0.5268 0.5235 0.4943 0.4982 0.5107 0.5557
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information of the network. Thirdly, MDCNN is an end-
to-end framework, which optimizes the parameters of the 
model while training the model, so that the overall perfor-
mance of the model can be improved.

4.3  Ablation Study

In MDCNN, we used three types of networks. To prove 
the effectiveness of these networks in improving MDC-
NN’s performance, we conducted the following ablation 
experiments with three designed variant models. Here 
MDCNN-1 indicates that experiments are only performed 
on the miRNA-target gene binary network, that is, only 
miRNA-target gene-related data is considered. MDCNN-2 
and MDCNN-3 represent the addition of the miRNA net-
work and the gene network to the miRNA-target gene asso-
ciation network, respectively.

Figure 3 shows the impact of different networks on 
the performance of the model. The performance of vari-
ants MDCNN-2 and MDCNN-3 are better than that of 
MDCNN-1, which proves that adding similarity data could 
improve the performance. Considering both the miRNA 
data and the gene data, the model MDCNN in this article 
has better performance than the models with only add a 
single network, i.e., MDCNN-2, and MDCNN-3. The rea-
son may be that the constructed heterogeneous information 
network contains more structural information and seman-
tic information than the binary network, which has a posi-
tive impact on the improvement of model performance.

4.4  Parameter Sensitivity

In this section, we investigate the influence of different 
parameters on the performance of the model. We report 
AUC to analyze the predicted results, as shown in Fig. 4.

Figure 4a shows how the embedding dimension affects 
the performance of MDCNN. We set the embedding dimen-
sion from {4,8, 16,32,64,128,256} . With the increase of 
dimension, the performance of MDCNN first increases 
and then remains stable. This means that too large embed-
ded dimensions may introduce noise data, which makes 
MDCNN unable to capture more useful information.

The path length set is another important parameter of 
MDCNN, so we experiment on the variable of the path set 
L. We consider the L from {{2}, {3}, {2,3}, {2,3, 4}} . It 
can be seen from Fig. 4b that it is better to consider path 
lengths of 2 and 3 at the same time than to consider only 
one of them. At the same time, although the performance of 
path combination {2,3, 4} is better than {2,3} , it is not obvi-
ous. Therefore, considering the efficiency of the model, we 
choose {2,3} as the final path combination.

Different thresholds � lead to different heterogeneous net-
works, and will affect the performance. We set the similarity 
network threshold � from {5,10,20,30,40} to analyze their 
impact on the performance of the model. As can be seen 
from Fig. 4c, the model achieves the best performance when 
� = 10 . With the increase of � , the model performance may 
decline due to the introduction of more noise. Therefore, 
� = 10 is finally determined as the final threshold of the 
model. At the same time, we can see that when 𝛿 > 10 , the 
AUC of the model does not change much, indicating that the 
model has strong robustness. Therefore, choosing � = 10 can 
not only make the model get the best performance, but also 
save the resources needed for the model running.

Finally, we consider the influence of the number of layers 
of the convolutional neural networks on the performance of 
the model. We set layers from 1 to 4 to analyze the model. It 
can be seen from Fig. 4d that the performance of the model 
tends to improve with the superposition of layers, but the 
improvement effect is not obvious. We consider that with 
the increase of the number of layers, the time complexity of 
the model also increases exponentially, we choose 3 as the 
final number of layers.

4.5  Analysis of Negative Sampling

In this experiment, we train the model by sampling the 
same number of unknown correlation samples as posi-
tive samples. The positive and negative proportion of real 
training samples is unbalanced, so we study the influence 
of the different positive and negative proportion of train-
ing sets on the performance of the model in this section. Fig. 3  The impact of different networks on the performance of the 

MDCNN
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Specifically, we studied the positive and negative ratios of 
{1 ∶ 1,1 ∶ 2,1 ∶ 3,1 ∶ 4,1 ∶ 5} , respectively. Table 4 shows 
the experimental results. The results indicate that MDCNN 
can still produce good results even if the dataset is unbal-
anced. If we use more negative samples, our model can 
still get good performance.

4.6  Case Studies

Case studies are conducted to further verify the capability of 
MDCNN to detect novel miRNA-target gene associations. 
Breast cancer is one of the most common cancers in women 
worldwide. Experiment [37] has shown that hsa-miR-
26b-5p, as one of the miRNAs with the largest number of 
gene associations, has a close relationship with breast can-
cer. CDKN1A is one of the genes with the largest increase 
in the number of associations experimentally verified in 
the past two years, and it is closely related to hepatocel-
lular carcinoma [38]. Therefore, we did case studies on a 
miRNA (hsa-miR-26b-5p) and a target gene (CDKN1A), 
respectively. For hsa-mir-26b-5p, we used all of the known 
positive samples in the dataset and equal-size negative sam-
ples which include all unknown entries of hsa-mir-26b-5p to 
train MDCNN. Table 5 shows the top 10 miRNA-target gene 
relationships predicted by MDCNN and the predicted results 
were verified by searching literature in PubMed. As shown 
in Tables 4 and 5 candidate target genes were supported by 

Fig. 4  The effect of parameters change on the MDCNN. a The effects of embedding size. b The effects of path length set. c The effects of 
thresholds in similarity network. d The effects of the number of layers

Table 4  The influence of a different number of negative samples on 
the MDCNN

Ratios Positive sam-
ples size

Negative samples size AUC 

1:1 237,574 237,574 0.9096
1:2 237,574 475,148 0.9234
1:3 237,574 712,722 0.9327
1:4 237,574 950,296 0.9379
1:5 237,574 1,187,870 0.9429
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the literature. For example, Grilli et al. [39] found that hsa-
mir-26b-5p and KIAA1468 is one of the most interesting 
couples after using the intersection of prediction and cor-
relation approaches. Furthermore, Chen et al. [40] pointed 
out that CYP3A4 may play critical roles in the development 
through the regulation of hsa-miR-26b-5p. It is worth noting 
that although the difference of predicted scores is relatively 
large, the difference of scores is reasonable because of the 
different degrees of each node in HIN and the different effec-
tive information captured by each node.

For CDKN1A, we used all of the known positive sam-
ples in the dataset and equal-size negative samples which 
includes all unknown entries of CDKN1A to train MDCNN. 
Then the pairs of CDKN1A are used for prediction. Table 6 
shows the top 10 potential miRNAs of CDKN1A pre-
dicted by MDCNN. In Tables 4 and 6 of 10 miRNAs were 
identified by PubMed. Zhao et al. [41] suggested that the 
low expressions of miR-92 families, which results in high 
expressions of CDKN1A. And in the study of the interac-
tion between mir-30b-5p and esophageal squamous cell 

carcinoma, Xu et al. [42] found that mir-30b-5p could down-
regulate the expression of the CDKN1A gene.

In summary, the prediction results further indicated that 
the effectiveness of MDCNN covering potential miRNA-
target gene associations.

5  Conclusions

In conclusion, the novel computational framework MDCNN 
we proposed is superior to other state-of-art methods. In the 
experiment, we confirmed that the information from multi-
ple sources of data is helpful to the improvement of model 
performance. Therefore, we will consider more miRNA and 
target gene information in the next research, such as miRNA 
family information, gene sequence information, to construct 
a more biologically meaningful miRNA target gene heter-
ogeneous information network. In addition, we randomly 
select data with the same size as the positive sample from 
the unknown correlation sample as the negative sample in 
the experiment, which may cause the performance of the 
model to have certain volatility. Thus, we will consider 
proposing a new and properer negative sampling method to 
improve the stability of the model in the future.
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