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Abstract 
To make better use of all kinds of knowledge to predict drug synergy, it is crucial to successfully establish a drug synergy 
prediction model and leverage the reconstruction of sparse known drug targets. Therefore, we present an in silico method that 
predicts the synergy scores of drug pairs based on multitask learning (DSML) that could fuse drug targets, protein–protein 
interactions, anatomical therapeutic chemical codes, a priori knowledge of drug combinations. To simultaneously reconstruct 
drug–target protein interactions and synergistic drug combinations, DSML benefits indirectly from the associations with 
relation through proteins. In cross-validation experiments, DSML improved the ability to predict drug synergy. Moreover, 
the reconstruction of drug–target interactions and the incorporation of multisource knowledge significantly improved drug 
combination predictions by a large margin. The potential drug combinations predicted by DSML demonstrate its ability to 
predict drug synergy.

Keywords Drug synergy · Multitask learning · Drug–target interaction · In silico technology

1 Introduction

Combined drug therapy involves giving two or more drugs 
to patients either simultaneously or sequentially, and such 
drug combinations are particularly important treatments for 
battling cancer and acquired immune deficiency syndrome 
(AIDS). The traditional “one drug, one target” therapy has 
limited therapeutic effects due to side effects and drug resist-
ance [1, 2]; co-administered drugs may increase therapeutic 
efficacy and reduce unnecessary off-target effects [3–5]. As 
commercialization has progressed, the U.S. Food and Drug 
Administration (FDA) has approved an increasing number 
of fixed-dose combinations for the treatment of complex 
diseases, such as neoplasms, AIDS, and type II diabetes. In 
January 2014, the FDA approved the first combination of 

drugs to combat melanoma with BRAF V600E or V600K 
mutations [6].

At the pharmacological level, relationships among indi-
vidual drugs can be divided into three categories of action: 
antagonistic, additive, and synergistic, and the effect of 
a drug combination is equal to, less than or greater than 
the sum of each drug [7]. Synergistic effects not only help 
reduce dosages while maintaining equal levels of efficacy 
but also delay the development of drug resistance, which is 
an ideal goal in the field of drug discovery [5, 7, 8]. Nev-
ertheless, developing a promising method for discovering 
synergistic drug combinations to better overcome complex 
diseases remains a challenge.

Using the traditional ‘case-by-case’ method, it is expen-
sive and time-consuming with to identify drug combinations 
from the vast pool of potential drug pairs. Therefore, due to 
the enormous screening space, some in silico methods have 
recently been proposed to improve clinical trials [9, 10]. 
Various patterns, including pharmacological features [11], 
and network topological features [12–14], are enriched in a 
large number of effective drug combinations; these patterns 
were used to build a statistical learning model. Then, compu-
tational models to calculate a synergy score can effectively 
screen drug combinations from the many potential drug 
combinations based on numerical features extracted from 
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these distinguished features. These computational models 
fall into two categories [15]: (1) hypothesis-driven and (2) 
data-driven. In recent years, several efforts have been made 
to construct hypothesis-driven models for synergistic drug 
combination prediction [16]. Network-based algorithms 
were used to develop prediction models using the hypothe-
ses. For example, NIMS [16] performed multi-view analysis 
through network community analysis based on the hypoth-
esis that the phenotypic similarity of drug–target-related 
diseases might be combined with target proximity in the 
drug–target network. CDA [17] used a drug-induced gene 
expression profile to analyze the correlations between drug-
induced pathways and disease-related pathways. DIGRE 
[18] combined the similarity of expression profiles of drug 
genes and drug response curves to predict a synergistic 
score for drug pairs. SynGen [19] estimated drug synergy 
by performing enrichment analysis on the expression profiles 
of drug-induced genes and disease-related genes. DCPred 
[20] utilized a set-based statistical method to assign drug 
synergy scores on a drug–drug cocktail network. The net-
work-based computational biology method [21] investigated 
drug–target proteins in genetic interaction networks and 
drug-related pathways to explore effective drug combina-
tions; this work improves our understanding of the potential 
rules for finding synergistic drug combinations. Considering 
that priori knowledge contributes to discovering synergistic 
drug combinations, some computational approaches have 
been developed based on the features of known synergis-
tic drug combinations; these are called data-driven models 
[15]. PDC-SGB [22] applied a stochastic gradient boosting 
algorithm to calculate a drug synergy score by incorporat-
ing drug structure similarity, target gene similarity, ATC 
similarity and drug combinations. RACS [23] proposed a 
semi-supervised sequencing model to predict drug synergy 
by considering the distinguishable features of effective drug 
combinations. NLLSS [24] separately analyzed results from 
different spaces and then combined these results using a sim-
ple weighted average method. Recently, a new ensemble 
prediction framework, named EPSDC [25], was proposed 
to integrate information from multiple sources to prioritize 
potential synergistic drug combinations. However, all these 
computational methods predict drug synergy based on sparse 
drug–target interactions, which may affect their prediction 
performances to some extent.

Overall, with the emergence of computational network 
pharmacology [26], the exploration of multidrug pharma-
cology has made substantial progress and improved the 
effectiveness of targeted therapies. However, drug combi-
nation prediction results could be improved by reconstruct-
ing drug targets. Although computational models have been 
proposed from multiple aspects for predicting drug targets 
[27, 28], these methods all consider drug–target prediction 
and drug combination discovery as two separate learning 

tasks in different computational models. Thus, we integrated 
drug–target prediction [29, 30] and drug combination pre-
diction [15] into a unified framework, namely the DSML 
algorithm, which can accurately and effectively predict drug 
synergy. First, we calculate drug similarity based on values 
provided by the anatomical therapeutic chemistry (ATC) 
coding system, and we calculate protein similarity using 
paths from the protein–protein interaction (PPI) network. 
Then, we defined graph regularization and used the dual 
least squares method to establish a new objective function 
for a unified framework to predict both drug targets and 
drug synergies that can incorporate both multi-type drug 
and protein networks. In cross-validation experiments, on 
the DCDB database [31], we compared DSML with existing 
drug synergy prediction methods and evaluated the effective-
ness of incorporating various source knowledge. Finally, to 
further demonstrate our framework’s ability to calculate a 
drug synergy score, we present some drug pairs with the 
highest synergy score as calculated by DSML.

2  Materials and Methods

The DSML model in this study reconstructs drug–target 
interactions to increase the prediction performance when 
scoring drug synergy through a unified framework. The 
schematic representation of the DSML is described in Fig. 1. 
In DSML, we first calculate drug similarity by applying the 
Jaccard index to the drug ATC code. Then, a path-based 
algorithm is designed to quantify protein similarity using the 
topology of the PPI network. Finally, we design a multitask 
learning algorithm to improve the drug synergy scoring per-
formance by reconstructing drug–target interactions, which 
can incorporate known drug combinations, protein topologi-
cal similarity, and drug anatomical therapeutic similarity. 
Furthermore, all the notations defined in DSML are provided 
and summarized in Table 1.

2.1  A Priori Drug Combination Knowledge

The enriched patterns hidden in priori knowledge of drug 
combinations, such as network topological features [12] and 
pharmacological features [11], can be used to build statis-
tical learning models to predict drug synergy. Therefore, 
incorporating priori knowledge of drug combinations into 
models can contribute to screening drug combinations from 
many drug pairs. In this study, all the effective drug combi-
nations were provided by DCDB 2.0 database, which forms 
a useful basis for computational modeling to predict syn-
ergistic scores between drugs and is freely available from 
http://www/cls.zju.edu.cn/dcdb/ [31].
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2.2  Drug Anatomical Therapeutic Similarity 
Calculation

A previous study of 59 effective drug combinations showed 
that synergistic agents are often classified into the same ana-
tomical and therapeutic groups [11]. That is, the pharmaco-
logical characteristics of drugs can be used to distinguish 

effective drug combinations from a massive search space. 
In addition, the drug ATC classification system code reflects 
drug similarity, and this concept is widely used to discover 
new drug targets and drug combinations [32]. We utilized 
the Jaccard similarity method to calculate drug similarity 
based on the ATC codes provided by DrugBank [33]. Let 
ATCk(d1) and ATCk(d2) denote the k-th layer of the ATC 

Fig. 1  Scheme to predict the synergy of drug pairs based on multitask learning

Table 1  Notations Notation Definition

m,n
X̂ ∈ ℝ

n∗n
≥0

X ∈ ℝ
n∗n
≥0

Ŷ ∈ ℝ
n∗m
≥0

Y ∈ ℝ
n∗m
≥0

Satc ∈ ℝ
n∗n
≥0

Spro ∈ ℝ
m∗m
≥0

Scom ∈ ℝ
n∗n
≥0

In∗n

Im∗m

Watc ∈ ℝ
n∗n
≥0

Wpro ∈ ℝ
m∗m
≥0

Wcom ∈ ℝ
n∗n
≥0

Number of proteins, and drugs
A priori knowledge of drug combinations used in training
Drug synergy for learning
Known drug–target interactions for training
Confidence score of drug target for learning
The drug similarity matrix
The protein similarity matrix
The drug synergy matrix
The identity matrix of size n*n
The identity matrix of size m*m
Watc = In∗n − Datc−1∕2SatcDatc−1∕2 , where Datc is a diagonal matrix, and Datc

ii
=
∑

j=1 S
atc
ij

Wpro = Im∗m − Dpro−1∕2SproDpro−1∕2 , where Dpro is a diagonal matrix, and Dpro

ii
=
∑

j=1 S
pro

ij

Wcom = In∗n − Dcom−1∕2

ScomDcom−1∕2 , where Dcom is a diagonal matrix, and Dcom
ii

=
∑

j=1 S
com
ij
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code of drugs d1 and d2 , respectively. Then, the anatomical 
therapeutic similarity between drugs d1 and d2 is defined as 
follows:

This study uses only the ATC code in the first three layers 
to measure drug similarity, because there is no similarity 
between most drugs in the fourth and fifth layers.

2.3  Protein‑Related Data Acquisition and Protein 
Similarity Calculation

Information about the mechanism of action is another good 
approach for discovering synergistic drug combinations. As 
reported in a previous study [23], most synergistic agent 
targets can be reached by traversing two to four edges in the 
PPI network. Thus, we collected highly effective drug–target 
interactions from the dataset DrugBank 5.0, which is freely 
accessible from www.drugb ank.ca [33], and the experimen-
tally supported Homo sapiens protein–protein interactions 
from the HPRD database (freely accessible from http://www.
hprd.org/) [34]. Protein topological similarity can be used to 
detect protein complexes [35, 36] and potential protein–pro-
tein interactions [37]. To date, many computational methods 
have been proposed to measure protein topological similarity 
using PPI networks, which can be mainly divided into two 
groups: neighbor-based and distance-based. The hypothesis 
of the neighbor-based approach is that two proteins are more 
similar when they share more neighbors [38]. The distance-
based approach considers all alternative paths to measure 
the topological similarity of proteins in the PPI network. 
Lei et al. [39] developed a novel algorithm based on ran-
dom walks to calculate protein topological similarity using 
a binary PPI network; this algorithm reduced the influences 
of noise of PPI network on the clustering analysis perfor-
mance. To coincide with the hypothesis that numerous paths 
of length from 2 to 4 exist between most synergistic agent 
targets in the PPI network, as reported in a previous study 
[23], we designed a protein similarity measurement that 
assigns higher topological similarity to proteins connected 
by paths with lengths between 2 and 4. It is important to note 
that all proteins are considered to have self-relationships in 
this study. Motivated by Dice’s coefficient, we developed a 
novel protein topological similarity measurement method 
based on the specific path length. The intuition behind this 
approach is that two similar proteins should not only be 
strongly connected by paths with lengths of 2–4, but should 
also share comparable visibility. Particularly, for special 

Satc
(

d1, d2
)

=
1

3

3
∑

k=1

|ATCk(d1) ∩ ATCk(d2)|

|ATCk(d1) ∪ ATCk(d2)|
.

length-L paths, we defined the relatedness between proteins 
 t1 and  t2 as follows:

where PL(t1, t2) denotes the number of paths with length L 
connecting proteins  t1 and  t2, PL(t1, t1) denotes those connect-
ing proteins  t1 and  t1, and PL(t2, t2) denotes those connecting 
proteins  t2 and  t2. Finally, Spro−L(t2, t2) for different lengths 
between 2 and 4 are combined by an averaging operation as 
the protein similarity Spro(t1, t2):

2.4  Multitask Learning Design

We first introduce a base model that uses the least squares 
method, several variations of which have been widely applied 
to discover various relationships between biological entities 
[24, 40, 41]. To obtain the synergy score matrix X based on 
the known synergistic drug combination X̂ , the objective 
function is defined as ψ(X) =

∑n

i=1
‖Xi − X̂i‖

2

= ‖X − X̂‖
2

 , 
where Xi is the i-th column of the synergy score matrix X , and 
X̂i is the i-th column of the known effective combinations X̂ . 
Furthermore, to implement multitask learning involving both 
drug combination prediction and drug–target inference into a 
unified model, we developed a dual least squares approach by 
extending the base model to two fitting terms, leading to the 
following objective function ψD(X) = ‖X − X̂‖

2

+ ‖Y − Ŷ‖
2

 , 
where X̂ and ̂Y represent the known effective combinations and 
drug–target associations, respectively, and X and Y denote 
the synergy scores and the confidence scores between the 
drug and target, respectively. In the above objective function, 
the first and the second terms impose the fitting of a priori 
knowledge of drug combinations and drug–target interac-
tions, respectively. This dual least squares introduces multitask 
learning because drug synergy and drug target are predicted 
simultaneously.

In addition, to be consistent with the data distribution of 
each type of knowledge, we refined the smoothness of the 
space using the graph regularization method. In particular, 
the inherent geometry of the data in each knowledge base can 
be preserved using the graph regularization method based on 
the manifold hypothesis that data points can be sampled geo-
metrically, which has been reported in many studies [42–45]. 
The geometric structures of the known drug combination net-
work, drug similarity network and protein similarity network 
are preserved in the following graph regularization terms:

Spro−L
(

t1, t2
)

=
2 ∗ PL

(

t1, t2
)

PL
(

t1, t1
)

+ PL
(

t2, t2
) ,

Spro
�

t1, t2
�

=

∑

L∈{2,3,4}S
pro−L

�

t1, t2
�

3
.

http://www.drugbank.ca
http://www.hprd.org/
http://www.hprd.org/
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where λcom ∈ (0,1) , λatc ∈ (0,1) , and λpro ∈ (0,1) respec-
tively, denote the weights of the drug combination knowl-
edge, drug similarity knowledge, and protein similarity 
knowledge. In the above objective function, these three regu-
larization terms, ψcom

GEN
(X) =

λcom

2

∑n

i,j=1
‖

Xi
√

Dcom
ii

−
Xj

√

Dcom
jj

‖

2

Scom
ij

 , 

ψatc
GEN

(X) =
λatc

2

∑n

i,j=1
‖

Xi
√

Datc
ii

−
Xj

√

Datc
jj

‖

2

Satc
ij

 , and ψpro

GEN
(Y)

=
λpro

2

∑m

i,j=1
‖

Yi
√

D
gene

ii

−
Yj

√

D
gene

jj

‖

2

S
pro

ij
 , are three smooth con-

straints corresponding to drug combination knowledge, drug 
similarity knowledge, and protein similarity knowledge, 
respectively.

The in silico model based on multitask learning is intro-
duced to simultaneously learn drug synergy and drug–target 
interaction, which enables multitask learning by combining 

ψGEN(X,Y) =
λcom

2

n
�

i,j=1

‖

Xi
√

Dcom
ii

−
Xj

�

Dcom
jj

‖

2

Scom
ij

+
λatc

2

n
�

i,j=1

‖

Xi
√

Datc
ii

−
Xj

�

Datc
jj

‖

2

Satc
ij

+
λpro

2

m
�

i,j=1

‖

Yi
�

D
gene

ii

−
Yj

�

D
gene

jj

‖

2

S
pro

ij

= ψcom
GEN

(X) + ψatc
GEN

(X) + ψ
pro

GEN
(Y),

that enables the synergistic score of unlabeled samples to 
be predicted without having to build a map function [46, 
47]. Unlike inductive learning, which builds a map function 
based only on all the labeled data, DSML can simultane-
ously accept all data as input, including both labeled and 
unlabeled samples, and it predicts the scores of unlabeled 
samples. We can take the partial derivative of the above 
objective function ψTL(X,Y) with respect to X and Y as 
follows:

After some algebraic transformations, the updating 
rules can be determined to learn X and Y through gradi-
ent descent [48] as follows:

where θ is the learning rate (set to 0.01 in this study). The 
matrices X and Y are updated according to the above rules 
until they converge. Finally, potential drug–target interac-
tions are prioritized with the entities in matrix Y, and the 

synergistic effect between drug i and drug j is scored with 
 Xij + Xji, because matrix X may not be symmetric. The 
DSML exploration process is summarized in Algorithm 1. 
We uploaded an R-language software package for execut-
ing the DSML method to GitHub at https ://githu b.com/
Chenx in-99/DSML that can be used to perform cross-
validation and model prediction with optimal parameters 
to reproduce our results.

�
(

ψTL(X,Y)
)

�(X)
= 2

(

X − X̂ + λcomWcomX + λatcWatcX + �X − γYYT
)

,

�
(

ψTL(X,Y)
)

�(Y)
= 2

(

Y − Ŷ + λproWproY − 2�YX + 2γYYTY

)

.

X(t + 1) = X(t) − � ∗ 2

(

X(t) − X̂ + λcomWcomX(t) + λatcWatcX(t) + �X(t) − γY(t)Y(t)T
)

,

Y(t + 1) = Y(t) − � ∗ 2

(

Y(t) − Ŷ + λproWproY(t) − 2�Y(t)X(t) + 2γY(t)Y(t)TY(t)
)

,

the dual least squares method and the graph regularization 
terms of the various knowledge types. Thus, the objec-
tive function to jointly learn X and Y can be formulated as 
follows:

where γ ≥ 0 is a regularization parameter (set to 0.001), and 
the additional cost term ‖X − YTY‖

2 is used to transfer the 
predictive drug target to discover drug combinations, but 
also captures common target proteins of some synergistic 
agents, as reported in a previous study [8]. The proposed 
computational model is a transductive learning method 

ψTL(X,Y) = ‖X − X̂‖
2

+ ‖Y − Ŷ‖
2

+
λcom

2

n
�

i,j=1

‖

Xi
√

Dcom
ii

−
Xj

�

Dcom
jj

‖

2

Scom
ij

+
λatc

2

n
�

i,j=1

‖

Xi
�

Datc
ii

−
Xj

�

Datc
jj

‖

2

Satc
ij

+
λpro

2

m
�

i,j=1

‖

Yi
�

D
pro

ii

−
Yj

�

D
pro

jj

‖

2

S
pro

ij
+ γ‖X − YTY‖

2

= ψD(X) + ψGEN(X,Y) + γ‖X − YTY‖
2
,

https://github.com/Chenxin-99/DSML
https://github.com/Chenxin-99/DSML
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3  Experiments

In these experiments, we first compare DSML with two other 
methods through cross-validation experiments. Then, we 
present several examples to show how the reconstruction of 
drug–target interactions and incorporation of knowledge from 
various sources can benefit the prediction of synergistic drug 
combinations. Finally, we provide case studies that confirm 
the ability of DSML to predict drug synergy.

3.1  Data Preparation and Parameter Selection

We adopted the dataset curated in our previous study [25], 
which contains 173 effective drug combinations, 129 pro-
tein–protein interactions and 449 drug–target interactions 
involving in 218 targets and 139 drugs. This benchmark 
database was curated from the DCDB 2.0 [31], HPRD 
[34], and DrugBank 5.0 [33], and it can be obtained from 
https ://githu b.com/Chenx in-99/DSML. In the experi-
ment, three cross-validation strategies, including unbal-
anced five-fold cross-validation (U-FFCV), balanced 
five-fold cross-validation (B-FFCV) and leave-one-out 

https://github.com/Chenxin-99/DSML
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cross-validation (LOOCV), were employed to evalu-
ate the predictive results of DSML and two competing 
methods. These three cross-validation strategies are illus-
trated in detail in Supplementary Fig. 1. Supplementary 
Fig. 1A shows the matrix of the known drug combina-
tions obtained from the benchmark dataset. As shown 
in Supplementary Fig. S1B and C, we first divide all the 
known effective drug combinations into five equal sized 
subsets; then, four of these subsets are used as the train-
ing set, while the remaining subset and all the unknown 
drug pairs are used as the testing set in U-FFCV [49, 50]. 
For B-FFCV, the remaining subset and an equal number 
of negative samples selected from unknown drug pairs 

through a simple random sampling algorithm are used 
as the testing set [51, 52]. As shown in Supplementary 
Fig. 1D, in the LOOCV experiment, we take each known 
combination in the testing set in turn as a positive sample, 
while all the unknown pairs in the testing set are taken as 
negative samples [43].

In the experiments, under different ranking cutoffs, the 
false-positive ratios (FPRs) and the true-positive ratios 
(TPRs) can be computed to draw a receiver-operating char-
acteristic curve (ROC) and calculate the area under the 
ROC curve (AUC) [53]. Furthermore, to heavily punish 
highly ranked negative samples, we also utilize the area 
under the precision-recall curve (AUPR) to evaluate the 
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Fig. 2  Drug synergy prediction performance in the FFCV experiment. a ROC curves in U-FFCV. b PR curves in U-FFCV. c ROC curves in 
B-FFCV. d PR curves in B-FFCV
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synergistic drug combinations prediction ability of these 
computational models. The precision-recall (PR) curve 
was plotted using the precision and recall values at differ-
ent ranking cutoffs [54]. Moreover, the F1-score is a sta-
tistical index used to measure the performance of binary 
model and is calculated by the harmonic mean of precision 
a n d  r e c a l l ,  d e f i n e d  f o r m a l l y  b y 
F1 − score = 2 ∗

precision∗recall

precision+recall
. The five-fold cross-valida-

tion runs were performed 10 times to set the DSML 
parameters ( λcom , λatc , and λpro ). Since the proposed com-
putational model is valid without restriction of λcom
+λatc + λpro = 1 (unlike MDAGRF [43] in which the sum 
of parameters must be 1), we utilized a grid search to 
obtain the best parameter combination from the values: 
λcom/λatc/λpro ∈ {0.001, 0.01,0.1,0.3,0.5,0.7,0.9} . This strat-
egy has been used in other studies [55, 56] to select param-
eter combinations from a larger space. We set λcom , λatc , 
and λpro to 0.1, 0.1, and 0.7, respectively. Furthermore, the 
parameters of compared methods were set to the default 
values suggested in those studies (e.g., maximum 
length = 4 for EPSDC and �A = 0.3, �P = 0.3 for NLLSS).

3.2  Cross‑validation Experiments

Three cross-validation experiments, including U-FFCV, 
B-FFCV and LOOCV, were performed to compare DSML to 
two other methods, NLLSS and EPSDC. After training the 
models, we adopted the AUC and AUPR to evaluate the pre-
diction results of each method by prioritizing drug pairs in 
the testing set. Figure 2 shows the scoring drug synergy per-
formance on FFCV, which included U-FFCV and B-FFCV. 

As shown in Fig. 2a, in the U-FFCV experiment, the AUCs 
of NLLSS and EPSDC are 0.8206 and 0.8227, respectively, 
while the AUC of the multitask learning method DSML is 
0.8693; in other words, DSML outperforms the other models 
in terms of AUC. Furthermore, a comparison of the AUPR 
among the different methods in the U-FFCV experiment is 
shown in Fig. 2b. The multitask learning method DSML 
(AUPR of 0.0816) achieves the best prediction performance 
among all the methods, improving on NLLSS (AUPR of 
0.0586) and EPSDC (AUPR of 0.0301) by a large margin 
because of the additional training information transferred 
from the predictive drug–target interactions. Comparing the 
PR curves and ROC curves, we can observe that the preci-
sion is quite low at a reasonably high recall and AUPR is 
quite low at a high AUC value in the U-FFCV experiment. 
A similar phenomenon has appeared in many other studies 
[50, 57]. The main reason for these results is imbalance in 
the benchmark dataset. We discuss this topic in detail in the 
https ://githu b.com/Chenx in-99/DSML. As shown in Fig. 2c, 
d, in the B-FFCV experiment, DSML significantly outper-
formed the two other methods by at least 4.44% in terms 
of AUC and 4.1% in terms of AUPR. Moreover, the preci-
sion, recall, and F1-score comparisons among the different 
methods at different thresholds in the FFCV experiment are 
shown in Supplementary Fig. 2. As shown in Supplementary 
Fig. 2A–C, we found an increase in prediction performance 
of at least 0.476% in terms of precision, 3.55% in terms of 
recall, and 0.89% in terms of F1-score on U-FFCV. Simi-
larly, we found increase in prediction performance (at least 
1.68% in terms of precision, 0.353% in terms of recall, and 
0.615% in terms of F1-score) on B-FFCV. In other words, 
DSML still outperforms the other two approaches in terms 
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of precision, recall, and F1-score at various thresholds on 
both B-FFCV and U-FFCV. The above experiments sug-
gest that DSML has a much better prediction capacity than 
the other state-of-the-art methods, when predicting drug 
synergy.

Compared with the FFCV experiment, the LOOCV 
experiment produces training data that are more similar 
to real data. To further demonstrate that DSML can out-
perform other computational methods for predicting drug 
synergy, we evaluated the models for scoring drug synergy 
on LOOCV. We used only AUC and recall as metrics in 
LOOCV, because of the extreme imbalance between posi-
tive samples and negative samples. Figure 3a, b shows the 
overall results. DSML consistently outperforms the other 
two methods in terms of AUC and recalls at all thresholds. 
Figure 3a shows that DSML achieves AUC 0.8791, versus 
0.8043 for NLLSS and 0.8428 for EPSDC. Similarly, as 
shown in Fig. 3b, DSML is superior to the other methods, 
with recall values from the top 50 to the top 500. The reason 
for these results may be that DSML effectively incorporates 
various sources of knowledge through graph regularization 
terms and dual least squares method.

3.3  Importance of Various Source Knowledge

To validate the usefulness of anatomical therapeutic groups 
and reconstruction of drug–target protein interactions, three 
DSML variants, DSML, DSML_without_ATC, and DSML_
without_reconstruction, were implemented. The first DSML 
was trained with all knowledge, DSML_without_ATC was 

trained without the drug anatomical therapeutic similarity, 
while DSML_without_reconstruction was trained without 
reconstruction of drug–target protein interactions; namely, 
drug–target protein and protein–protein interaction knowl-
edge was ignored in DSML_without_reconstruction. As 
shown in Fig. 4, the DSML variant performed better than the 
DSML_without_ATC and DSML_without_reconstruction 
variants in additional experiments on U-FFCV and LOOCV. 
In terms of AUC, DSML outperformed DSML_without_
ATC and DSML_without_reconstruction on U-FFCV by 
11.23% and 0.95% (Fig. 4a) and by 12.14% and 0.8% on 
LOOCV (Fig. 4b), respectively. These results may illus-
trate that the drug synergy prediction performance can be 
improved by incorporating various sources of knowledge 
and by reconstructing drug–targets.

3.4  Novel Synergistic Drug Combination

To further demonstrate the potential of DSML for screen-
ing synergistic drug combinations, we performed an 
additional experiment based on the current version of 
the database and then, treated the unknown combina-
tions (neutral samples) as candidate sets for validation. 
Finally, we ranked the candidate drug pairs based on the 
synergy scores calculated by DSML. Table 2 lists the top 
five combinations ranked by DSML based on multitask 
learning. To obtain more useful information, we referred 
to the relevant literature. The gemcitabine and 5-fluo-
rouracil combination ranked first and could be useful in 
combating advanced pancreatic cancer with an acceptable 
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toxicity profile [58]. The oxaliplatin and cyclophospha-
mide combination, which ranked second, has synergistic 
action and has been proven to be effective for treating 
locally advanced cervical cancer [59]. Montagna et al. 
[60] reported that patients with metastatic breast cancer 
could receive metronomic oral capecitabine and cyclo-
phosphamide plus bevacizumab and erlotinib. A previ-
ous study reported that the use of neoadjuvant cisplatin, 
methotrexate, and vinblastine (CMV) chemotherapy could 
improve invasive bladder cancer treatment outcomes. The 
carbamazepine and valproic acid combination, which 
ranked fifth, may show synergistic anticonvulsant effi-
cacy [61]. Moreover, we provide a list of the top 100 
potential drug combinations at https ://githu b.com/Chenx 
in-99/DSML.

4  Discussion

In this study, in contrast to other approaches, we explored 
the use of multitask learning to improve synergistic drug 
combination predictions by effectively reconstructing 
drug–target protein interactions. The ablation experiment 
between DSML and DSML_without_reconstruction, which 
is a single-task learning method, demonstrated that multi-
task can enrich the training information of synergistic drug 
combinations by predicting drug–target interactions, result-
ing in an overall improvement. The comparisons with the 
EPSDC and NLLSS methods indicated that although the 
other two methods can incorporate various types of informa-
tion, DSML seems to be a better computational approach for 
calculating a synergy score. The main factors that contribute 
to the success of DSML may be that it differs significantly 
from the previous methods. First, DSML effectively consid-
ers the characteristics of synergistic agents in various types 
of information, including drug–target protein interactions 
and ATC codes. Second, to predict potential candidate com-
binations, DSML can use both the known and experimental 
synergistic drug combinations as seed datasets. In addition, 
many studies have shown that synergistic drug combina-
tions can be screened out without negative samples; DSML 
performs this as well. Moreover, we not only integrated 
knowledge from various sources through the establishment 
of a computational model but also reconstructed drug–target 
protein interactions to further improve the performance of 
screening synergistic drug combinations. As stated above, 
we employed cross-validation experiments on the bench-
mark datasets. As a result, throughout all the verification 
schemes, DSML was proved to be reliable and showed 
better prediction performances, which may indicate that 
reconstructing drug–target protein interactions contributes 
to screening synergistic drug combinations.
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However, some limitations of DSML should be men-
tioned. First, although this method includes the recon-
struction of drug–target protein interactions to improve the 
prediction performance, it is difficult to obtain excellent 
computational performance, since the set of protein–pro-
tein interaction is sparse and noisy. In future work, we plan 
to incorporate more drug features to improve the predictive 
performance of synergistic drug combinations. For exam-
ple, miRNAs with proven biological functions have become 
increasingly popular drug targets [62]. Drug–disease asso-
ciation is also helpful for understanding the mechanisms of 
drug therapy in disease [63]. Therefore, incorporating the 
accumulated miRNA–drug interactions and disease–drug 
associations may further improve drug synergy prediction. 
Second, DSML can currently screen only pair-wise syner-
gistic drug combinations, not drug combinations of more 
than two drugs.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s1253 9-021-00422 -x.
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