
2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3168008, IEEE Journal of
Biomedical and Health Informatics

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Multi-relation graph embedding for predicting
miRNA-target gene interactions by integrating

gene sequence information
Jiawei Luo*, Wenjue Ouyang, Cong Shen, and Jie Cai

Abstract— Accumulated studies have found that miRNAs
are in charge of many complex diseases such as cancers
by modulating gene expression. Predicting miRNA-target
interactions is beneficial for uncovering the crucial roles
of miRNAs in regulating target genes and the progression
of diseases. The emergence of large-scale genomic and
biological data as well as the recent development in hetero-
geneous networks provides new opportunities for miRNA
target identification. Compared with conventional meth-
ods, computational methods become a decent solution
for high efficiency. Thus, designing a method that could
excavate valid information from the heterogeneous network
and gene sequences is in great demand for improving the
prediction accuracy. In this study, we proposed a graph-
based model named MRMTI for the prediction of miRNA-
target interactions. MRMTI utilized the multi-relation graph
convolution module and the Bi-LSTM module to incorporate
both network topology and sequential information. The
learned embeddings of miRNAs and genes were then used
to calculate the prediction scores of miRNA-target pairs.
Comparisons with other state-of-the-art graph embedding
methods and existing bioinformatic tools illustrated the
superiority of MRMTI under multiple criteria metrics. Three
variants of MRMTI implied the positive effect of multi-
relation. The experimental results of case studies further
demonstrated the prominent ability of MRMTI in predicting
novel associations.

Index Terms— Heterogeneous information network,
graph embedding, graph convolutional network, miRNA-
target gene interactions

I. INTRODUCTION

M ICRORNAS (miRNAs) are small non-coding RNAs
which play important roles in various biological pro-

cesses, such as cell cycle control, cell growth, and cell
differentiation[1]. They are first expressed as precursor RNAs,
and then further processed into mature miRNAs. Mature
miRNAs modulate gene expression post-transcriptionally by
binding to 3’ untranslated regions (3’UTRs) of target genes[2].
Abnormal miRNA expression can lead to dysfunctions of
target genes, which in turn causes many complex diseases
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such as cancer. In the meantime, studies have shown that over
one third of human genes appear to be conserved miRNA
targets[3]. Therefore, identifying miRNA target genes is of
great significance for revealing the regulatory mechanisms
of miRNAs and their roles in the development of complex
diseases.

Conventional biological methods for validating miRNA
target interactions (MTIs) are based on molecular experiments
or genome-wide screening, including western blot, quantitative
real-time PCR (qPCR), and microarray experiments[4][5][6].
However, as the number of newly discovered miRNAs con-
tinues to increase, such experimental methods may be time-
consuming, costly, and somewhat inefficient. In consequence,
computational approaches are in great demand for facilitating
miRNA target prediction.

Early computational researches are mainly based on biolog-
ical features and principles. For instance, miRanda[7] filtered
target genes on the basis of sequence complementarity, free en-
ergy calculation, and evolutionary conservation. TargetScan[8]
combined cross-species conservation and thermodynamics-
based modeling of RNA:RNA duplex interactions to predict
targets of vertebrate miRNAs. As a refined version of Tar-
getScan, TargetScanS[3] predicted targets with a conserved 6-
nt seed match flanked by either an m8 match or a t1A anchor.
Both miRanda and TargetScan were designed to predict targets
containing multiple miRNA-recognition elements (MREs). In
contrast, DIANA-microT[9] took into account the identifica-
tions of targets containing single MREs for human and mouse
miRNAs. Although these sequence-based methods do provide
a set of target candidates, they are likely to suffer from the
high false positive rate.

With the accumulation of data, the construction of re-
lated databases including miRbase[10], HumanNet[11], and
miRTarBase[12] provides relatively reliable data sources and
makes it possible to develop machine learning methods
for miRNA target prediction. Traditional machine learning
methods including support vector machine[13][14], naı̈ve
bayes[15], and ensemble learning[16] have been frequently
employed to make predictions at an early stage. MiTarget2[13]
used features extracted from a public high-quality microar-
ray dataset, and then leveraged the SVM classifier for pre-
diction. TargetMiner[14] adopted the appropriate generation
methods to obtain negative samples and identified miRNA
targets based on SVM. Feature extraction was also required
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for NBmiRTar[15], however, it utilized naı̈ve bayes as the
classification model rather than the SVM classifier. The afore-
mentioned methods depend, to a great extent, on the artificially
well-designed features, and usually show unsatisfactory results
with respect to the false positive rate. Ensemble learning
methods combine the outcomes of several prediction models
to surpass the performance of each component model. Based
on the idea of ensemble learning, SMILE[16] was designed
by integrating six prediction tools and was demonstrated
to achieve better generalization performance. Yet the major
challenge of manual feature engineering still exists.

Due to the strength of representation learning, it has also
been applied in a wide range of bioinformatic tasks. For
example, NIMCGCN[17] first learned latent feature represen-
tations through graph convolutional networks[18] and then
fed them into a matrix completion model to obtain associ-
ation scores for miRNA-disease pairs. Another network-based
model IDDkin[19] integrated graph convolution networks,
graph attention networks, and adaptive weighting methods
to effectively learn latent representations on the graph and
subsequently enhanced the prediction of kinase inhibitors.
Still, there are relatively few methods of miRNA-target iden-
tification that resort to representation learning. For instance,
IMTRBM[20] built a weighted miRNA-target interaction net-
work and then employed the restricted Boltzmann machine
for extracting features and making predictions. Nevertheless,
the sequence information was not involved in IMTRBM. SG-
LSTM[21] generated both sequential and geometrical embed-
dings for miRNAs and genes, then an LSTM model was lever-
aged for predicting candidate targets. Apart from the weakness
mentioned above, the existing graph embedding-based meth-
ods neglect the influence of relation types. However, modeling
both structural and relational data in the heterogeneous net-
work have been demonstrated to be beneficial[22][23]. Thus,
preserving relational data along with structural and sequential
features simultaneously is expected to help promote prediction
performance.

To tackle the above challenges, we propose a novel graph-
based model named MRMTI, which considers both network
structure and sequential information for the task of predicting
miRNA-target gene interactions. We construct a heteroge-
neous network that incorporates miRNA similarities, gene
similarities, and miRNA-target interactions. Then the network
embeddings of miRNAs and genes are trained through a multi-
relation graph convolution module. Next, we leverage a Bi-
LSTM model to extract deeper sequential features for genes.
Afterward, the network structural embeddings and sequential
embeddings are integrated to compute the association scores.
The proposed MRMTI is compared with seven state-of-the-art
methods under multiple metrics on miRNA-target prediction.
We design the variants for validating the effectiveness of multi-
relation. Furthermore, we conduct case studies to demonstrate
the capability of MRMTI in predicting novel associations.

II. METHODOLOGY

A. Overview
The proposed model consists of three main parts. Firstly,

a heterogeneous information network (HIN) is constructed
by integrating miRNA similarity network, gene similarity
network, and miRNA-gene bipartite network (Figure 1A).
Then, on the basis of the HIN, the multi-relation graph
convolution is adopted to embeds all the nodes in the net-
work, incorporating both neighborhood information and multi-
relational information (Figure 1B). In the meantime, the real-
valued embeddings of genes generated by word2vec are fed
into the Bi-LSTM module for excavating deeper sequential
feature representations (Figure 1C). In the last period, we make
predictions by inner product using the learned embeddings,
and the model is trained in an end-to-end manner.

B. Construct heterogeneous information network
In this section, we introduce how to integrate information

from different sources and construct a miRNA-gene heteroge-
neous network, which is the foundation of our method.

1) MiRNA-miRNA similarity network: The miRNA sequence
data in miRbase[10] is mainly derived from author submis-
sion and wet experiments, hence it can be a reliable data
source for directly mining functional relationships of miRNAs.
Therefore, miRNA sequences are used to calculate the simi-
larity scores based on the Needleman-Wunsch algorithm[24],
which performs pairwise global alignment on two miRNA
sequences. The miRNA-miRNA Network Netm is denoted
by the matrix M = [Mij ] ∈ RNm×Nm , where Mij represents
the association between miRNA mi and mj . Nm denotes the
number of miRNAs. To reduce the negative impact caused by
redundant data, the top η1 neighbors with the highest similarity
scores are reserved for each miRNA. Let NSij represent the
similarity score between the miRNA mi and the miRNA mj .
Specifically, for the miRNA mi, an edge connecting with mj

is added when NSij ranks top η1 among all the neighbors of
mi. Hence, Mij can be obtained as follows:

Mij =

{
1, if rank (NSij) ≤ η1
0, otherwise (1)

2) Gene-gene functional similarity network: Based on the
assumption that genes with similar functions are more likely to
be regulated by similar miRNAs, it is reasonable to integrate
functional similarities of genes to construct the gene network.
HumanNet v2[11] has been shown to be fairly useful for the
task of disease gene prediction[25][26]. In this study, we use
it to construct the gene-gene functional similarity network.

The associated log-likelihood-score of the interaction be-
tween gene gi and gene gj is denoted by LLSij , which
measures the probability of the interaction representing a
true functional connection. Similar to the construction of the
miRNA-miRNA network, we preserve the top η2 neighbors
for each gene. The gene-gene network Netg is represented
by the matrix G = [Gij ] ∈ RNg×Ng , where Ng denotes the
number of genes and Gij is defined as:

Gij =

{
1, if rank (LLSij) ≤ η2
0, otherwise (2)
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Fig. 1. The overall framework of the MRMTI model. (A) The construction of miRNA-gene heterogeneous information network. (B) The message
passing procedure with multi-relation graph convolution for learning node embeddings. For each node, the embeddings are updated by incorporating
neighborhood information under different relations. (C) The extraction of gene sequential feature utilizing word2vec and Bi-LSTM module. The final
embeddings of miRNAs and genes are used for making predictions.

3) MiRNA-gene interaction network: We acquire the known
human miRNA-gene associations from the experimentally
validated miRNA-target association database miRTarBase[12].
The miRNA-gene interaction network Netmg is represented
by the matrix A = [Aij ] ∈ RNm×Ng . If the miRNA mi is
associated with the gene gj , the element Aij = 1. Conversely,
Aij = 0 if the connection between the miRNA mi and the
gene gj is unknown or unobserved.

After combining the miRNA-miRNA network Netm, the
gene-gene network Netg and the miRNA-gene association
network Netmg , we finally construct a heterogeneous informa-
tion network. In this study, a novel method named MRMTI is
proposed based on the HIN for solving the problem of miRNA
target identification.

C. Multi-relation graph convolution
A heterogeneous information network contains multiple

types of relations between different nodes. In order to better
integrate neighborhood information and capture the network
structural feature, inspired by Decagon[23], we propose the
multi-relation graph convolution network to obtain the repre-
sentations of nodes. Given a graph G = (V, E ,R), where V
denotes the set of vertices, E is the set of edges and R is
the set of relations. As mentioned in the previous section, the
heterogeneous information network includes miRNA-miRNA
associations, gene-gene associations, and miRNA-gene inter-
actions. Meanwhile, for a selected target node a, the process
of passing information from node a to its neighboring nodes
is considered as diffusion, while the process of passing infor-
mation to node a from its neighbors is considered as fusion.
These processes are different due to the different neighbor
structure of node a and its neighboring nodes. Considering

the process of fusion and diffusion, there are two types of
relations between each pair of nodes. Thus, 6 kinds of edges
exist in the graph, namely R = {r1, r2, . . . , r6}. There is a
d-dimensional initial embedding ei ∈ Rd for each node i ∈ V .
We use one-hot vectors as the initial embeddings in this study.
Noted that the dimension of the embeddings for miRNA nodes
and gene nodes can be different.

The process of message passing is the core of graph
convolution, including information fusion and diffusion. Since
each node in the network has distinct local structure and
neighborhood information, different message-passing schemas
should be defined for different nodes and edge types. In
other words, the updated node embeddings are supposed to be
computed using relation-specific transformations. Specifically,
by using learnable relational weights and the parameter sharing
strategy, we are able to consider the local structure of nodes
while taking into account the type and direction of edges,
thereby obtaining more accurate representations.

Given node i, the local aggregation of neighborhood infor-
mation under relation r1 ∈ R in the l-th layer is described as
follows:

U
(l)
N =

∑
j∈Nr1

i

1

cr1ij
W (l)

r1 h
(l)
j (3)

where Nr1
i represents the set of neighbors of node i under

relation r1 and node j is a neighboring node in Nr1
i . h(l)j ∈

Rd(l)

represents the hidden state of node j in the l-th layer with
d(l) denoting the dimension of embeddings, and h(0)j = ej . cr1ij
is a normalization constant which can either be learned or be
set manually. Inspired by Decagon[23], the constant is set as
cr1ij =

√∣∣Nr1
i ‖N

r1
j

∣∣ in this study. It is particularly noteworthy
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that W (l)
r1 ∈ Rd(l)×d(l+1)

denotes a relation-specific weight
matrix and is shared over the adjacent nodes connected by
relation r1 (i.e. nodes in Nr1

i ), thus the information of relation
type is introduced into the computation. The self-loop of node
i is defined as follows:

U
(l)
S =

1

cr1i
h
(l)
i (4)

where the normalization constant is defined as cr1i = |Nr1
i |. To

sum up the input vectors of all neighboring nodes as well as
the feature vector of node i itself, we compute U (l)

N and U (l)
S

at the same time and integrate the results by adding them:

I(l)r1 = U
(l)
N + U

(l)
S (5)

In consequence, we obtain the information computed uti-
lizing the local graph connectivity structure under the given
relation. The message passed from neighborhood under other
relation types in the l-th layer such as I(l)r2 are computed in
the same way. Considering all edge types in the graph, the
neural network propagation rule for updating the embeddings
of node i can be written as follows:

h
(l+1)
i = σ

(
I(l)r1 + I(l)r2 + · · ·+ I(l)rn

)
(6)

where n = |R| denotes the number of relation types and
σ(·) is the ReLU activation function. The formulations directly
demonstrate that for each node, different local neighborhood
structures lead to different computational architectures. By
stacking L graph convolution layers as defined, higher hop
neighborhood information is incorporated into local neighbors.
In this way, we can make better use of the network topology
as well as the local structure of nodes.

D. Gene sequence feature extraction
Recently, the idea of Natural Language Processing (NLP)

has been adapted and applied to many biological tasks, such as
the identification of protein-protein interactions[27] and cancer
prognostic genes[28]. Inspired by these ideas, in this study
we first use the word2vec model to represent gene sequences.
Specifically, we split the valid gene sequences retrieved from
R package ‘biomaRt’ into k-mer segmentations which are
regarded as “words”, and then map them into real-valued
embeddings through the pre-trained word2vec model. In our
implementation, we set k to 3 and the size of embedding
denoted as dw is set to 64.

To fully exploit the latent feature of gene sequences, it is
beneficial to use the bidirectional long short-term memory
recurrent neural network (Bi-LSTM). Compared with the
original LSTM, Bi-LSTM made an improvement by taking
both previous and subsequent inputs into account. We utilize
Bi-LSTM to capture “deep” sequential features, aiming for
larger expressive capability. Formally, the sequential feature
vector of gene gi is updated as follows:

sgi = f (gi) =
−−−−→
LSTM(wj)⊕

←−−−−
LSTM(wj) (7)

where sgi ∈ Rdf denotes the output feature vector of gene gi
and df represents the dimensionality. We denote the j-th k-mer

segment of a gene sequence as wj ∈ Rdw , which is the output
of the word2vec model, and j ranges from 1 to the number of
k-mer segments existing in a gene sequence.

−−−−→
LSTM(·) and←−−−−

LSTM(·) capture the underlying interactions in contexts from
forward and backward directions. The symbol ⊕ represents
the concatenation between the output of the forward and the
backward LSTM cell. The obtained representations can serve
as supplementary information for the task of miRNA target
identification.

E. Information fusion and model prediction
To improve the accuracy of predicting miRNA-target inter-

actions, we make an effort to extract and integrate effective
information from different sources. Specifically, we use a
learnable transformation matrix to project gene representations
to the same embedding space as miRNA representations. As
a result, the final embedding of gene gi is formulated as:

zgi =Wp

(
concat

(
h(L)
gi , sgi

))
(8)

where Wp is the transformation matrix and zgi ∈ Rd(L)

.
concat(·) denotes the operation of concatenation.

MRMTI embeds both miRNAs and genes in a low di-
mensional latent space. The learned embedding matrices of
miRNA and gene are represented as Hm =

[
h
(L)
mi

]
∈

RNm×d(L)

and Hg = [zgi ] ∈ RNg×d(L)

, respectively. Even-
tually, we adopt the inner product between the corresponding
miRNA and gene embeddings to calculate the prediction score
of the miRNA-target pair:

ŷmigj = σ
(
h(L)
mi
zTgj

)
(9)

where σ is the sigmoid function. h(L)
mi is the embedding of

miRNA mi, which is the i-th row of the miRNA embedding
matrix Hm. Likewise, zgj denotes the embedding of gene gj
that is the j-th row of the gene embedding matrix Hg .

We use the hinge loss for optimization, which is widely used
in conventional binary classification tasks. Taking all relations
into consideration, the loss function of MRMTI is designed as
follows:

L =
∑
r∈R

∑
i∈S+∪j∈S−

ReLU (margin−ŷi + ŷj) (10)

where S+ denotes the set of positive samples, and S− denotes
the set of negative samples that are randomly sampled with the
same size as positive samples. The prediction scores of positive
and negative sample are denoted as ŷi and ŷj , respectively. The
hyper-parameter margin is manually chosen in advance. The
loss function encourages the model to score observed samples
higher than the negative ones. The MRMTI model is then
trained and optimized in an end-to-end manner. The data for
MRMTI is available at https://github.com/ojinxj/MRMTI.

III. RESULTS

A. Datasets
We downloaded the known human miRNA-target asso-

ciations from miRTarBase[12], which contains 380,639 ex-
perimentally verified human miRNA-target association data,
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TABLE I
STATISTICS OF THE DATASETS

Dataset miRTarBase HumanNet miRBase biomaRt
MicroRNA 2599 - 2656 -
Gene 15,064 17,929 - 13,416
Relation 380,639 525,537 - -

involving 2599 mature miRNAs and 15,064 genes. The hu-
man mature miRNA sequences were acquired from miRBase
database[10]. After removing the duplicate records, it con-
tains 2656 mature miRNAs. The gene functional similarity
data were derived from the HumanNet database[11], which
contains 525,537 interactions and their log-likelihood score
(LLS) among 17,929 genes. The 3’UTR gene sequences in
FASTA format were retrieved from R package biomaRt[29].

A series of preprocessing operations were performed on the
collected multi-source data. First, we calculated the average
log-likelihood score (LLS) of all the records from the Human-
Net and removed the entries with LLS below the average. As
for gene sequences obtained from biomaRt, we removed the
abnormal data and acquired 13,416 gene sequences. In view of
the potential negative impact brought by network sparsity, we
removed the nodes with degrees below 10 in the gene-gene
network Netg and consequently 7880 genes were retained,
forming the list of genes for experimental use. Finally, after
taking the intersection sets, our experimental dataset consists
of 18,033 miRNA-miRNA associations, 127,772 gene-gene
associations, and 211,111 miRNA-target interactions, involv-
ing 2546 miRNAs and 7880 genes. Statistical information
about the dataset is listed in Table 1. The set of negative
samples were randomly sampled with the same size as positive
samples.

B. Baselines

We chose several state-of-the-art models as comparison
methods for evaluating the performance on the dataset of
MRMTI. These methods are roughly classified into two cate-
gories: novel computational bioinformatic methods and classic
graph embedding methods.

In terms of existing computational methods in the field of
bioinformatics, we compared MRMTI with SG-LSTM[21],
IDDkin[19], and KATZ[30][31]. SG-LSTM is a deep learning
framework for predicting miRNA-target gene interactions.
It combines both geometric and sequential embeddings and
utilizes LSTM as the classifier to get the prediction scores. We
set the parameters as suggested in the original article. IDDkin
is a network-based deep influence framework for predicting
kinase inhibitors. The parameters L and p were chosen from
{8,16,32,64,128} and {8,12,16,20,24}, respectively. We chose
the parameter K from 6 to 14 with step 2. KATZ calculates
the proximity of pair-wise nodes in the graph by integrating
the information of different meta-paths. The parameter k is set
to be 2, 3, and 4.

As for the classic graph embedding methods, we made
comparisons with DeepWalk[32], LINE[33], GraRep[34], and
SDNE[35]. DeepWalk is a graph embedding algorithm based
on random-walk. The parameters, including walk length, walks

per-vertex and the window size of skip-gram model were
tuned meticulously for optimal performance. LINE makes
an improvement in network embedding by taking into ac-
count both the first-order and second-order proximities. In
accordance with the original paper, we concatenated the first-
hop and second-hop representations as the final represen-
tation for better results. SDNE is a semi-supervised deep
model for embedding graph vertices, which could capture the
highly-nonlinear local-global network structure. The hyper-
parameters α and β were tuned in light of SDNE[35]. GraRep
is a matrix factorization-based method for learning graph pre-
sentations with the advantage of incorporating global structural
information. We chose maximum matrix k-step size K from 2
to 7.

C. Experimental settings

1) Parameter settings: MRMTI is an end-to-end model
where all the trainable parameters in the model were trained
jointly using Adam optimizer with a learning rate of 0.001.
In practice, we randomly divided the data set into training,
validation and test sets. Concretely, 80% of the known edges
were used to train the model, and 10% were used to choose
model parameters. The rest of edges were taken as the test
set to evaluate the model performance. Note that in the
experiment, we repeated for 10 times to take the average
result for avoiding uncertainty. We implemented the MRMTI
model in Tensorflow[36] and set the number of hidden layers
L to 2. The output dimension of each layer was selected from
{16,32,64,128,256} and {8,16,32,64,128}, respectively. The
margin parameter of hinge loss was set to margin=0.3. The
dropout ratio was set to 0.1. The parameters η1 and η2 were
both selected from {5, 10, 20, 30, 40}. The output dimension
of Bi-LSTM was selected from {8, 16, 32, 64}. The parameter
k and dw of word2vec model were chosen from {2, 3, 4} and
{16, 32, 64}, respectively. We leveraged Xavier[37] as the
initialization method for model parameters. Mini-batch was
used during the training process and the batch size was fixed
to 512.

2) Evaluation criteria: In this paper, AUC, AUPR, Precision,
Recall, F1-score, and Balanced Accuracy were used for the
evaluation of the performance of miRNA-target identifica-
tion results. AUC is the area under the receiver operating
characteristics (ROC) curve which is established by plotting
the true positive rate (TPR) against the false positive rate
(FPR) under changing threshold settings. TPR and FPR are
calculated as follows: TPR=TP/(TP+FN), FPR=FP/(TN+FP),
where TP and TN are used to represent the numbers of
correctly identified positive and negative examples, FP and FN
are the numbers of misidentified positive and negative samples.
Similarly, AUPR is the area under the Precision-Recall (PR)
curve, which is plotted using Precision as the vertical axis
and Recall as the horizontal axis with various thresholds. The
equations for computing Precision and Recall are as follows:
Precision=TP/(TP+FP), Recall=TP/(TP+FN). F1-score is an
evaluation metric that comprehensively considers the Precision
and Recall: F1-score=2×Precision×Recall/(Precision+Recall).
The evaluation metric Balanced Accuracy is especially useful
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when dealing with imbalanced datasets, and it is calculated as:
Balanced Accuracy=1

2×(TP/(TP+FN)+TN/(TN+FP )).

D. Comparisons with baselines

Figure 2 shows the ROC curves and the PR curves
of MRMTI and baseline models. It can be observed that
MRMTI outperformed the state-of-the-art methods with
AUC=0.9183 and AUPR=0.9204. Among the four popular
graph embedding models, GraRep achieved the best per-
formance with AUC=0.8468 and AUPR=0.8316, while the
AUCs and AUPRs of DeepWalk, LINE, and SDNE were
0.8179, 0.8290, 0.8388 and 0.8106, 0.8058, 0.8221, re-
spectively. In terms of computational bioinformatic meth-
ods, KATZ (AUC=0.8886, AUPR=0.8901) and IDDkin
(AUC=0.8630, AUPR=0.8606) shown better results than SG-
LSTM (AUC=0.8581, AUPR=0.8461). Since KATZ and ID-
Dkin managed to capture the structural characteristics of the
heterogeneous network, the results imply the importance of
modeling network heterogeneity. Besides, SG-LSTM outper-
formed all the classic graph embedding methods, indicating
that the combination of geometrical and sequential features
had a positive effect on model performance. Our proposed
MRMTI model achieved the best performance as it can not
only take full advantage of the constructed heterogeneous
network, but also considers both structural and sequential fea-
tures. In order to further validate the performance of MRMTI,
the AUCs and AUPRs of MRMTI and other methods with
different runs were compared using paired t-test. As shown in
the Table S1, the p-values were less than 0.05, suggesting that
the differences between AUCs and AUPRCs were statistically
significant.

Apart from the overall evaluation metrics (i.e., AUC and
AUPR), we further analyzed the performance of MRMTI using
Precision, Recall, F1-score and Balanced Accuracy with the
top-ranked 10% and 20% predictions. As shown in Table 2,
MRMTI outperformed most of the baseline models and the
overall trend of the performances for different methods is
similar as analyzed before. The reasons for the superiority
of MRMTI are threefold. First of all, we integrated miRNA
and gene similarities along with the miRNA-target interactions
to build a heterogeneous network that was expected to be
more informative. Secondly, MRMTI utilized the graph con-
volutional network to efficiently embed the nodes across the
network, with both multi-relational information and network
structure incorporated. In the meantime, MRMTI additionally
excavated deep sequential features with Bi-LSTM under the
inspiration of natural language processing.

E. Parameter analysis

In this section, we investigate the impacts of the embedding
dimension d(i) of the i-th layer. AUC scores of the MRMTI
model using only one graph convolution layer with varying
output dimensions are shown in Figure 3(A). As shown,
the experimental performance improves with the increase of
dimension. However, as the dimension continues to increase
from 128 to 256, the performance increases slightly and

becomes relatively stable, implying that 128 is enough for
obtaining information.

Accumulated researches indicated that multi-hop neighbor-
hood information is beneficial for learning more accurate
node representations, and also found similar trends that 2-
hop higher-order graph structure may help achieve the best
performance[18][38]. For such a reason, we added another
convolution layer to acquire information from second-order
neighbors. To further study the influence of the embedding
size, we fixed the dimension of the first layer to 128 and then
tuned the output dimension of the second layer. Results are
presented in Figure 3(B). As the dimension ranging from 8
to 128, the performance first increases and then experiences
a marginal decrease when the dimension reaches 128, which
may due to the over-fitting or the introduction of noisy data. As
a result, we set the dimension of the graph convolution layer
to 128-64, aiming for the best performance. Other parameters
including the output dimension of Bi-LSTM and the threshold
of similarity network η were investigated, and the results are
shown in Figure S1-S2 and Table S2 in the Supplementary
Material.

F. The effect of multi-relation

In this section, to validate the effectiveness of multiple
relations, we conducted an experiment to compare MRMTI
with its three variants, each of which deliberately neglected
one kind of inverse edge. The results of miRNA-target iden-
tification are reported in Table 3. MRMTI-MTI-inv means
that the inverse edge between a miRNA and its target gene
was ignored. Likewise, MRMTI-MM-inv and MRMTI-GG-
inv respectively denote the omission of the inverse relation
among miRNAs and genes.

As shown in Table 3, the original MRMTI model achieved
the highest AUC and AUPR scores, which were 0.9183 and
0.9204, respectively. AUC scores of the three variants were
0.8979, 0.9131, and 0.9053, while the AUPR scores were
0.8983, 0.9086, and 0.8992. In contrast with the MRMTI
model, there was a decline in both AUC score and AUPR score
of the three variants, and the overall performance of MRMTI-
MTI-inv dropped the most with its AUC score decreased by
2.2%.

A possible reason for the results may be that the local
structure of two nodes connected by an edge is nonidentical,
thus, considering the processes of data fusion and diffusion,
the information conveyed through the original edge and inverse
edge are dissimilar as well. Specifically, the local structure
of miRNA nodes and gene nodes in the bipartite network is
much more different than in homogenous networks, which
may subsequently account for the bigger degradation in the
performance of MRMTI-MTI-inv. Additionally, the perfor-
mance of MRMTI-MM-inv was slightly better than MRMTI-
GG-inv, which may be owing to the fact that the number
of gene nodes (7880) in the heterogeneous network is much
larger than that of miRNA nodes (2546) and the network
structure of gene nodes has a greater effect accordingly.
MRMTI comprehensively considered both data fusion and
diffusion, so that it achieved the best performance.
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Fig. 2. Comparisons with baseline models by ROC curves (A) and PR curves (B).

TABLE II
COMPARISON WITH BASELINE METHODS ON OUR DATASET. PRE@0.1 DENOTES PRECISION AT 10%.

Methods PRE@0.1 PRE@0.2 REC@0.1 REC@0.2 F1@0.1 F1@0.2 BA@0.1 BA@0.2
DeepWalk 0.9156 0.8751 0.1829 0.3500 0.3049 0.5000 0.5828 0.6494
GraRep 0.9195 0.8877 0.1839 0.3551 0.3065 0.5072 0.5831 0.6541
LINE 0.8908 0.8583 0.1782 0.3433 0.2969 0.4904 0.5770 0.6423
SDNE 0.9109 0.8807 0.1822 0.3523 0.3036 0.5033 0.5812 0.6497
SG-LSTM 0.9317 0.8969 0.1863 0.3587 0.3105 0.5125 0.5863 0.6587
KATZ 0.9869 0.9510 0.1973 0.3805 0.3288 0.5435 0.5973 0.6827
IDDkin 0.9619 0.9322 0.1924 0.3689 0.3206 0.5269 0.5924 0.6689
MRMTI 0.9881 0.9722 0.1976 0.3878 0.3293 0.5544 0.5976 0.6889

Fig. 3. Analysis of dimension. (A)The AUC scores of MRMTI with one
convolution layer under different dimension. (B)The AUC scores under
varying dimension of the second layer with the dimension of the first
layer fixed.

TABLE III
THE RESULTS OF MRMTI AND ITS VARIANTS

Methods AUC Improvement AUPR Improvement
MRMTI 0.9183 — 0.9204 —
MRMTI-MTI-inv 0.8979 -2.2% 0.8983 -2.4%
MRMTI-MM-inv 0.9131 -0.6% 0.9086 -1.3%
MRMTI-GG-inv 0.9053 -1.4% 0.8992 -2.3%

G. Visualization

The functionality of the representations could be verified
through visualization. Therefore, we first chose two miR-
NAs as cases, namely hsa-miR-302a-3p and hsa-miR-4731-
5p. Then genes that are known to have associations with
the miRNA are included in the experiment, while the same
proportion of genes are selected from the unknown sets. Fi-
nally, we utilized the t-SNE algorithm (t-Distributed Stochastic

Fig. 4. 2D visualization of gene representations on miRTarBase.

Neighbor Embedding) to reduce the gene embeddings to 2
dimensions, and the visualization results obtained are shown
in Figure 4. It can be observed that there is a distinct difference
between the known and unknown associations. Thus, we
consider the representations learned by MRMTI model to be
effective.

H. Case studies
Case studies were carried out so as to further test the ability

of our proposed MRMTI model in predicting unknown interac-
tions. For predicting either potential targets related to a certain
miRNA or miRNA candidates associated with a specific gene,
we first trained the model with all known associations between
miRNAs and genes to obtain the prediction results. Next, we
sorted the results in descending order by the prediction scores
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TABLE IV
THE PREDICTION RESULTS FOR HSA-MIR-155-5P AND

HSA-MIR-335-5P

MiRNA Top 10 ranked predictions
Rank Target Gene Evidence

hsa-miR-155-5p

1 IGF1R PMID: 28613101
2 DICER1 PMID: 31275058
3 VPS33A -
4 LDLR PMID: 26867493
5 BTF3L4 -
6 IGF1 PMID: 32256755
7 JAG1 -
8 XIAP PMID: 26779627
9 EIF5 -
10 FKBP14 -

hsa-miR-335-5p

1 SMAD7 PMID: 31248450
2 CHRDL1 -
3 LMNB2 -
4 HHIP -
5 H3F3B PMID: 27347075
6 DUSP4 -
7 PTEN PMID: 29307835
8 BACH1 -
9 STAT5A PMID: 32791489
10 IL6R -

and removed all the existing entries in the original dataset.
Finally, the top 10 candidates were extracted and validated
manually in PubMed, which comprises copious biomedical
literature.

Hsa-miR-155-5p is a well-known oncogenic miRNA that
has been found to be linked to many complex diseases, such as
breast cancer[39] and colorectal cancer[40]. Meanwhile, hsa-
mir-335-5p is another important miRNA that is involved in
numerous biological processes as a regulator[41][42]. Con-
sequently, exploring potential targets of these two miRNAs
could be meaningful. In like manner, CDKN1A and SMAD4
were chosen for their crucial functions in various cellular
processes[43][44].

The prediction and validation results of the top 10 gene
candidates and miRNA candidates are presented in Table 4
and Table 5, respectively. Noted that the known miRNA-target
interactions we used for building the model were acquired
from miRTarBase (version 8.0), which is a comparatively
comprehensive dataset and was updated in 2020, thus the
number of newly published experimental literature is limited.
Under this condition, 5 out of the top 10 hsa-miR-155-5p-
targeted genes and 4 out of the top 10 hsa-miR-335-5p-
targeted genes were verified by literature. For instance, it has
been proved by experimental means such as RT-qPCR that
miR-335 activates TGFβ signaling pathway through targeting
SMAD7[41]. Furthermore, as shown in Table 5, among the top
10 predicted miRNAs associated with CDKN1A or SMAD4,
one-half of the associations were confirmed with supporting
evidence provided by published papers.

In summary, the case studies indicate that the MRMTI
model has the capability of predicting novel miRNA-target
interactions.

IV. CONCLUSION

Identifying miRNA target genes is of great significance
for improving our understanding in the regulatory roles of

TABLE V
THE PREDICTION RESULTS FOR CDKN1A AND SMAD4

Gene Top 10 ranked predictions
Rank MiRNA Evidence

CDKN1A

1 hsa-miR-608 -
2 hsa-miR-363-5p PMID: 30784290
3 hsa-miR-29b-3p -
4 hsa-miR-423-5p PMID: 32264887
5 hsa-miR-6766-5p -
6 hsa-miR-193a-5p PMID: 33352502
7 hsa-miR-92a-3p PMID: 26482648
8 hsa-miR-103a-3p -
9 hsa-miR-299-3p PMID: 28600498
10 hsa-miR-125b-5p -

SMAD4

1 hsa-miR-21-5p PMID: 29943845
2 hsa-miR-192-5p PMID: 31293639
3 hsa-miR-135a-5p -
4 hsa-miR-3662 -
5 hsa-miR-135b-5p PMID: 27422404
6 hsa-miR-5692a -
7 hsa-miR-340-5p PMID: 27229858
8 hsa-miR-8063 -
9 hsa-miR-9-5p -
10 hsa-miR-590-3p PMID: 26498065

miRNAs. In this work, a unified graph-based model MRMTI
was proposed for miRNA-target prediction. We constructed
a heterogeneous information network (HIN) and then took
advantage of the graph convolutional network along with rela-
tional data to obtain structural representations for miRNAs and
genes. In the meantime, we made better use of gene sequences
through word2vec and Bi-LSTM. Experimental results demon-
strate that MRMTI could achieve superior performance in
contrast with other state-of-the-art baseline models in most
of the evaluation criteria. By comparing with three variants,
we further validated the effect of multiple relations on the
performance of MRMTI. Moreover, four important human
miRNAs and genes were used as case studies to evaluate
the ability of MRMTI in identifying novel miRNA-target
interactions. After the integration of multi-source information,
the graph convolutional network manages to efficiently extract
latent features from the constructed HIN, which significantly
contributes to the promotion of performance. The comprehen-
sive consideration of relational data, network topology, and
sequential information could be a reason for the excellent
performance of MRMTI as well.

The superiority of MRMTI implies the potential of graph
embedding methods and provides a new perspective for
miRNA-target identification. Although MRMTI has shown
outstanding prediction performance, it has certain limitations.
As we used a concatenation operation for feature integration,
other methods of feature integration such as the Hadamard
product and attention mechanism are worth investigation.
Meanwhile, other valuable biological information such as
miRNA families and the Gene Ontology (GO) could be
gathered for the construction of HIN. In future work, we would
like to predict the interactions between miRNAs and genes
for specific cancer lines, which could help understand the
mechanism of miRNAs and target genes in the development of
a certain disease. Moreover, more consideration will be given
to the biological characteristics and comparisons will be made
with traditional miRNA-target identification methods.
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