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Abstract
Purpose The identification of potential kinase inhibitors plays a key role in drug discovery for treating human diseases. 
Currently, most existing computational methods only extract limited features such as sequence information from kinases 
and inhibitors. To further enhance the identification of kinase inhibitors, more features need to be leveraged. Hence, it is 
appealing to develop effective methods to aggregate feature information from multisource knowledge for predicting potential 
kinase inhibitors. In this paper, we propose a novel computational framework called FLMTS to improve the performance of 
kinase inhibitor prediction by aggregating multisource knowledge.
Method FLMTS uses a random walk with restart (RWR) to combine multiscale information in a heterogeneous network. 
We used the combined information as features of compounds and kinases and input them into random forest (RF) to predict 
unknown compound–kinase interactions.
Results Experimental results reveal that FLMTS obtains significant improvement over existing state-of-the-art methods. 
Case studies demonstrated the reliability of FLMTS, and pathway enrichment analysis demonstrated that FLMTS could also 
accurately predict signaling pathways in disease treatment.
Conclusion In conclusion, our computational framework of FLMTS for improving the prediction of potential kinase inhibi-
tors successfully aggregates feature information from multisource knowledge, yielding better prediction performance than 
existing state-of-the-art methods.

Graphical Abstract
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1 Introduction

For the past 30 years, kinases have been intensively inves-
tigated as drug targets. There are 518 kinases in the human 
kinome, constituting approximately 1.7% of all human genes 
[1]. Deregulation of kinase function has been proven to be 
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important in many human diseases, including cancer and 
immunological, inflammatory, and infectious diseases [2, 
3]. Despite the importance of kinases, the functions of more 
than 100 kinases (approximately 25%) are still completely 
unknown, and kinases that are basically uncharacterized 
account for approximately 50% [4]. As of December 2020, 
62 kinase inhibitors have been approved by the US Food 
and Drug Administration (US FDA) for the treatment of 
cancer and other diseases [5]; however, these drugs have 
only proven successful in targeting a small number of human 
kinases (approximately 80). Among them, many kinases are 
targeted by several kinase inhibitors [6]. The above facts 
indicate that kinase inhibitor field development is still in 
its infancy [7, 8]. As a result, finding new kinase inhibitors 
remains a promising, but difficult task.

Traditional approaches of studying kinase inhibitors 
often utilize biological experiments, but it is costly with 
low efficiency even for large-scale pharmaceutical compa-
nies [9, 10]. As a result, computation-based models have 
been proposed to predict kinase ligands in many studies 
[11–13]. Compared with traditional drug design approaches, 
computational approaches are generally more flexible and 
faster. Thus, it is necessary to develop computation-based 
models to compensate for the shortcomings of traditional 
approaches for the discovery of kinase inhibitors.

Machine learning-based technologies have significantly 
improved the effect of forecasting the biological activities 
of massive kinase inhibitors in recent years. The models 
used include random forest (RF) [10, 14], support vector 
machine (SVM) [15], naive Bayesian (NB) [13], K-nearest 
neighbors (KNN) [16], and deep neural network (DNN) [17, 
18]. These models made predictions based on the features 
of kinases and kinase inhibitors. For instance, Avram et al. 
[14] developed a PFPECFP model to compute molecular 
encoding (2D structures of inhibitors) and used the random 
forest (RF) to compute classification probabilities of kinases. 
However, the lack of 3D structures of kinases (proteins) and 
inhibitors (compounds) limits the forecast precision and gen-
eralization of the model.

In addition to the features of kinases and inhibitors, the 
interaction network information between inhibitors and 
kinases is also useful for predicting kinase inhibitors. Exist-
ing studies indicate that network-based methods are critical 
in drug discovery as well as other tasks [19–21], including 
drug–target interactions (DTI) [22, 23], drug reposition-
ing [24, 25] and drug combinations [20, 26]. For instance, 
Chen et al. [27] utilized the KATZ measure and constructed 
a heterogeneous network for predicting human microbe-
disease associations. Li et al. and lv et al. [28, 29] built 
heterogeneous networks and utilized the random walk with 
restart (RWR) to find multiple entity relationships. Shen 
et al. [30] proposed an information fusion model based on a 
heterogeneous network (IDDkin) to improve the prediction 

performance of kinase inhibitors and achieved excellent 
performance. In addition, a method of nonnegative matrix 
factorization has shown excellent performance on target 
prediction [31, 32]. It can utilize the similarity information 
of entities to reconstruct an interaction matrix and predict 
unknown interactions. Therefore, it is necessary to combine 
the advantages of feature-based methods and network-based 
methods to improve the prediction performance of kinase 
inhibitors.

In this paper, we presented feature learning on a mul-
tisource knowledge (FLMTS) model to predict inhibitor 
(compound)-kinase (protein) interactions. First, we used the 
features of kinases (proteins) and inhibitors (compounds) to 
construct two similarity networks. Together with the com-
pound–-kinase interaction network, we constructed a het-
erogeneous network. Second, we used the RWR to fuse the 
global network topology information of the heterogeneous 
network. Third, we used the features of nodes that have fused 
network information as input of the RF model to output the 
classification probabilities. The major contributions of our 
work are summarized as follows:

• To the best of our knowledge, this is the first attempt to 
extract features by performing RWR on a heterogeneous 
network for predicting potential kinase inhibitors. RWR 
can fuse multisource knowledge and extract features 
without supervision.

• We presented a novel FLMTS model based on RWR and 
RF. FLMTS could present better performance based on 
limited a priori knowledge, since it may be less inclined 
to overfitting.

• Diverse experiments on two public datasets demonstrate 
that FLMTS not only outperforms the state-of-the-art 
baselines but can also accurately target disease related 
signaling pathways.

2  Materials and Methods

2.1  Framework Overview

By fusing the topological information of the heterogene-
ous network and the features of the nodes (compounds and 
kinases) in the network, FLMTS employs the RF algorithm 
to predict the potential kinase inhibitors. The overview of 
FLMTS is shown in Fig. 1 First, a kinase similarity matrix 
and a compound similarity matrix were constructed by using 
the amino acid sequences of the kinases and the MACCS 
fingerprints of the compounds, respectively. Then we uti-
lized known compound–kinase interactions to construct 
an adjacency matrix. Second, we used the three matri-
ces to construct three networks, namely the compound 
similarity network, the kinase similarity network, and the 
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compound–kinase interaction network, and employed the 
three networks to structure a heterogeneous network. Third, 
the RWR was applied to fuse the global network topology 
information of nodes in the heterogeneous network. Finally, 
we used the fusion information of the nodes as features and 
input them into the RF classifier to train the model.

2.2  Heterogeneous Network Construction

In this study, we used the Tang and PKIS [30] datasets to 
train the compound–kinase interaction prediction model. 
In the following, we took an example, the PKIS dataset, 
to demonstrate the process of network construction. In our 
experiment, the same operation was also performed on the 
Tang dataset.

2.2.1  Data Source and Adjacency Matrix Construction

In the Tang and PKIS [30] datasets, Davis' kinase profiling 
datasets were used to structure the Tang dataset [33–35], 
and the PKIS dataset stands for the published kinase inhibi-
tor set [36, 37]. In the two datasets, each compound–kinase 
pair was classified into the positive (active) or the neutral 
(inactive) class by setting the threshold of pIC50 as 6.3 
(equivalent to 500 nM). Hence, there are not real negative 

samples, but only positive samples and neutral samples. 
In this paper, all neutral samples are regarded as negative 
samples. There were only 15,660 and 2414 kinase-inhibitor 
(compound) pairs (positive samples) in the Tang and PKIS 
datasets, respectively. Notably, there are far fewer known 
kinase–inhibitor pairs than the unknown ones in real-world 
scenes. There is no literature or database reporting negative 
kinase inhibitor pairs. It is worth noting that the PKIS is 
smaller and more sparsely distributed than the Tang dataset. 
In this study, the number of negatives is approximately 28 
times and 15 times that of the positives in the PKIS and 
Tang datasets, respectively. Detailed information is shown 
in Table 1. Let K =

{

k1, k2, ..., km
}

 and P =
{

p1, p2, ..., pn
}

 
denote the set of kinases and the set of compounds, respec-
tively. The compound–kinase interaction information was 
applied to build an adjacency matrix C ∈ Rm×n . For each 
element Cij in C , Cij = 1 (positive sample) if compound pi 
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Fig. 1  Overview of the FLMTS architecture. a Construct an adja-
cency matrix C by known compound–kinase interactions, and con-
struct a compound similarity matrix A and a kinase similarity matrix 
B based on chemical structures and acid sequences separately. b Con-
struct a heterogeneous network by combining the three matrices A , 

B and C above. c The global network topology information of nodes 
is fused by using RWR in the heterogeneous network. d Extract the 
kinase matrix K and the compound matrix D into RF as input. e 
FLMTS provides interaction scores between the compounds and the 
kinases

Table 1  Detailed descriptions of the two datasets

Datasets Kinases Compounds Negative Positive Total

Tang 188 1351 238,328 15,660 253,988
PKIS 195 366 68,956 2414 71,370
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and kinase kj are kinase-inhibitor pairs; otherwise, Cij = 0 
(negative sample).

2.2.2  Similarity Calculation

For compounds, we used the MACCS fingerprints to calcu-
late the similarity score by using the Tanimoto coefficient 
(T) [38]. Notably, each MACCS fingerprint is a 167-dimen-
sional string composed of values 0 and 1 and was assembled 
by RDKit (http:// www. rdkit. org/). The Tanimoto coefficient 
T of two compounds is defined as:

where s is the number of same dimensionals with the same 
values between the fingerprints of the two compounds, and 
e and h denote the length of the MACCS fingerprints of the 
two compounds. The results were represented by a com-
pound similarity matrix A ∈ Rn×n . In matrix A , the values 
of entries (i, j) and (j, i) are calculated by using compound 
pi and compound pj . Additionally, we assembled the names 
of kinases from the PKIS set to obtain the UniProt ID of 
kinases from the KinHub database (http:// kinhub. org/). 
Then, we downloaded the amino acid sequences of all the 
kinases from the UniProt database (http:// www. unipr ot. org/) 
in the PKIS set and the similarity of the kinases was calcu-
lated based on the amino acid sequences using the Smith-
Waterman algorithm [39]. The Smith Waterman algorithm 
determines the similarity region between the two amino acid 
sequences of the kinase by comparing all possible length 
fragments and optimizing the similarity measure, to per-
form local sequence alignment [20]. The pair of segments 
with maximum similarity could be found by first locating the 
maximum element of score matrix [39], and the similarity 
score of two kinase amino acid sequences is determined by 
the maximum score in the matrix. The results of all kinase 
similarity scores were represented as a kinase similarity 
matrix B ∈ Rm×m . Finally, we normalized matrix B by row.

2.2.3  The Heterogeneous Network

In this paper, the heterogeneous network is structured by 
using a compound similarity network, a kinase similar-
ity network, and a compound–kinase interaction network. 
First, we used the adjacency matrix C to construct the com-
pound–kinase interaction network, adding an edge between 
the kinase kj and the compound pi if Cij = 1 ; otherwise, no 
edge was added between kj and pi . The compound–kinase 
interaction network includes 195 kinase nodes, 366 com-
pound nodes, and 2414 edges from the PKIS dataset.

Second, we constructed a compound similarity network 
using the compound similarity matrix A . The network con-
tains 366 nodes (compounds) and 133,956 edges, and the 

T =
s

e + h − s
,

edge weight was set as the similarity score between the 
two nodes. Similarly, a kinase similarity network was also 
constructed, including 195 nodes (kinases) and 38,025 
edges. Finally, we constructed a heterogeneous network 
based on the PKIS dataset, which contains two types of 
nodes (195 kinases and 366 compounds) and three types of 
edges (133,956 compound-compound similarities, 38,025 
kinase-kinase similarities, and 2414 compound–-kinase 
interactions). Similarly, a heterogeneous network was 
also constructed based on the Tang dataset, containing 
two types of nodes (188 kinases and 1351 compounds) and 
three types of edges (35,344 kinase-kinase similarities, 
1,825,201 compound–-compound similarities, and 15,660 
compound–kinase interactions) (Table 2).

2.3  Heterogeneous Information Fusion

In the FLMTS model, we used the RWR to fuse node 
information in the heterogeneous network. The random 
walker starts at the seed node and spreads information 
throughout the network by either (1) randomly moving 
to its connected neighbors at every step according to the 
probability transition matrix [29, 40] or (2) restarting from 
the seed node according to the restarting probability � . 
Ultimately, the representation of each node in the hetero-
geneous network was able to fuse the global information 
of the network. Specifically, let q0 be the initial vector in 
which the seed node u is set to 1 and the other nodes are 
equal to 0, and let qn be the vector for the n-th iteration, 
where the i-th value represents the probability of the ran-
dom walker taking n steps at the seed node to node i . The 
vector of seed node u at step n + 1 can be represented by 
the equation below:

where S̃ is the normalized adjacency matrix S =

[

A C

CT B

]

 . 

The iteration will stop, if the difference between qn+1 and qn 
(measured by the L2 norm) falls below 10−16 or the number 
of iterations is over 100. When it stops at step t , we obtain 
the representation of u as qt . By stacking the representations 
of all the nodes, we obtained a feature matrix.

qn+1 = (1 − 𝛼)S̃qn + 𝛼q0,

Table 2  Detailed information of two heterogeneous networks

Tang PKIS

Nodes Edges Nodes Edges

Compound similarity network 1351 1,825,201 366 133,956
Kinase similarity network 188 35,344 195 38,025
Interaction network 1539 15,660 561 2414

http://www.rdkit.org/
http://kinhub.org/
http://www.uniprot.org/
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2.4  Prediction with Random Forest

The feature matrix constructed above is represented as 

M =

[

D Y

X K

]

 , where D ∈ Rn×n , Y ∈ Rn×m , X ∈ Rm×n , and 

K ∈ Rm×m . The matrix D and the matrix K represent the 
compound feature matrix and the kinase feature matrix, 
respectively, where the j-th row of K (the i-th row of D ) 
expresses the feature of the j-th kinase (the i-th compound). 
We connected the feature of the i-th compound and the j-th 
kinase, and input it into the random forest to identify their 
relationship score. Similarly, we also used the matrix 
( D + Y  ) and the matrix ( X + K ) as the compound feature 
and kinase feature, respectively, to predict their relationship 
score. The performance was evaluated with the baselines.

2.5  Implementation Details and Evaluation Metrics

We applied the same setting of FLMTS on two kinase profil-
ing datasets and implemented FLMTS with NumPy = 1.21.2 
and Scikit-Learn = 1.0. We trained a random forest classifier 
using the function sklearn.ensemble.RandomForestClassi-
fier with parameters (n_estimators = 1000, min_samples_
split = 2, random_state = 0) in Python = 3.7.6. The parameter 
� of the restarting probability is from the set {0.1, 0.2, …, 
0.9}. Two metrics were applied to evaluate the performance 
of FLMTS, including ROC-AUC and AUPR score. In addi-
tion, for a more comprehensive evaluation of the model, we 
also applied precision, recall, balance-accuracy (BA), and 
F1-score (F1) to measure its performance:

where TP, FP, TN and FN represent the numbers of posi-
tive samples identified correctly, positive samples identi-
fied incorrectly, negative samples identified correctly and 
negative samples identified incorrectly, respectively. We 
compared the performance of FLMTS and baselines per-
forming fivefold cross-validation: we randomly split the 
compound–-kinase interactions into five different sets with 
equal size, among which four sets were selected for training, 
and the last one was used to test the model. By choosing 

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 = 2 ×
precision × recall

precision + recall
,

BA =
1

2
×
(

TP

TP + FN
+

TN

TN + FP

)

,

different test sets each time, this procedure was repeated five 
times. In total, the process of cross validation was repeated 
10 times, and we calculated the average score as the result.

2.6  Baselines

We introduced several state-of-the-art approaches, which are 
classical methods based on heterogeneous networks.

• IDDkin [30] is a new information fusion model based on 
heterogeneous network. It combines compound–-kinase 
interaction information and compound similarity to con-
struct heterogeneous networks. It improves the prediction 
performance by fusing the structure information and the 
topology information of heterogeneous networks.

• RWR [29] based on the topology information of the het-
erogeneous network and first applies network retrieval 
methods to integrated biological interactions. We 
adopted this approach on the heterogeneous network to 
predict unknown interactions.

• Nonnegative Matrix Factorization (NMF) [31]. The mul-
tisource information is effectively integrated through 
matrix decomposition, and then the possible interactive 
information is predicted by matrix synthesis. We utilized 
known interactions, compound similarity, and kinase 
similarity to predict undiscovered interactions.

• Katz [27] is also a network-based method to obtain 
network topology information. This method combines 
KATZ measurement [41], a similarity metric, and Gauss-
ian interaction profile kernel similarity to predict the 
interaction relationship.

• FLMTS + . Variant of our proposed method FLMTS, 
where we added the interaction information of each com-
pound (kinase) with each kinase (compound) and con-
catenated it to the original compound (kinase) feature. It 
is worth noting that both the interaction information and 
the original feature fused the heterogeneous information 
by RWR.

3  Results

We illustrate our experimental results in detail, and the 
superiority of FLMTS was demonstrated by comparing our 
results with baselines.

3.1  Influence of the Hyperparameter

In FLMTS, the restarting probability ( α ) is the only hyper-
parameter. We chose the value of α according to the best 
performance of FLMTS judged by the AUC and the AUPR. 
The results demonstrate that FLMTS achieves optimal per-
formance at � = 0.7 (Fig. 2). We found that α has a slight 
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effect on the AUC but an obvious effect on the AUPR, and 
the performance based on the PKIS dataset outperformed 
Tang in both AUC and AUPR metrics. Notably, the PKIS 
dataset is smaller and sparser than the Tang dataset. Figure 3 
shows that our method is more suitable for datasets with 
less data volume and fewer positive samples. In the field of 
kinase inhibitors, the amount of data tends to be smaller and 
there are even fewer experimentally validated known inhibi-
tors; therefore, our model has excellent practical value for 
the prediction of potential kinase inhibitors.

3.2  Comparison with Other Methods

The results of evaluating the performance of FLMTS 
are presented in Fig.  3. Both FLMTS and its variant 
FLMTS + outperformed the other models by a large mar-
gin, and FLMTS obtained the best performance. On the 
PKIS dataset, FLMTS achieves the highest AUC value of 
0.9732, which is 3.44% higher than the best NMF model 
in the state-of-the-art (Fig. 3a). For the other evalua-
tion metric AUPR on the PKIS dataset, FLMTS reached 
a score of 0.7463, which is 17.16% higher than the best 
IDDkin model in the state of the art (Fig. 3b). On the Tang 
dataset, the AUC and AUPR of the model are 0.69 and 
5.59% higher than those of the NMF model, respectively 
(Fig. 3c, d). The performance of FLMTS is better than that 
of FLMTS + , which shows that the similarity networks of 
compounds and kinases contain enough information for 
predicting kinase inhibitors, while the interaction matri-
ces Y  and K may contain noisy data. In summary, FLMTS 

performs best among all the listed methods on the two 
datasets, indicating its excellent prediction capability.

Furthermore, both Tang and PKIS are very sparse data-
sets, and the number of negative samples is approximately 
28 times and 15 times that of the positive samples in the 
PKIS and Tang datasets, respectively. When the dataset is 
too sparse, it is essential to correctly predict positive sam-
ples [42]. Therefore, four additional evaluation metrics, 
balanced-accuracy (BA), F1-score, recall, and precision, 
were used to comprehensively assess the performance of 
the model. As shown in Table 2, FLMTS achieved better 
performances than the other models. For instance, com-
pared with the best IDDkin model in the state-of-the-art 
on the PKIS dataset, FLMTS has the smallest increase of 
0.0267 and the largest increase of 0.0786 among the four 
metrics. Based on the Tang dataset, FLMTS also achieves 
the best results compared to the state-of-the-art meth-
ods. Moreover, we found that the results of FLMTS on 
PKIS were improved more significantly than the results of 
FLMTS on Tang, and the ratio of positive data over nega-
tive data on PKIS is much smaller than that of Tang. This 
shows that FLMTS has better practical application pros-
pects; because the number of positive samples is extremely 
small in real-world scenarios. In general, Table 3 demon-
strates the advantages of FLMTS over baselines on the 
two datasets.

3.3  Case Studies: Sorafenib, Vandetanib, Sunitinib

We selected three anticancer drugs approved by the FDA as 
the objects of the case studies, namely, sorafenib [43], van-
detanib [44], and sunitinib [45]. They are not included in our 
datasets. Sorafenib, a small molecule B-RAF and VEGFR 
inhibitor, is a drug for the therapy of nephron-cell carcinoma 
and unresectable hepatocellular carcinoma. Vandetanib is 
the first systemic therapy drug for treating symptomatic or 
progressive advanced medullary thyroid cancer. Sunitinib, 
an inhibitor targeting PDGFR β and VEGFR2, has been 
approved by the FDA for the medical diagnosis and treat-
ment of neuroendocrine tumors of the pancreas. For each 
drug (kinase inhibitor), Table 4 shows the predicted top ten 
kinases in the PKIS dataset. For sorafenib, seven of the ten 
top kinases were supported by the literature. The numbers 
for vandetanib and sunitinib were 5 and 4, respectively. For 
instance, the literature [46] indicates that the target kinases 
of sorafenib were PDGFR α < DDR2 < RET < HIPK4 < FLT
4 < FLT1 < KDR < PDGFR β < RAF1 < FLT3 in rank of IC50 
values. Moreover, most of the predicted kinases focus on one 
kinase group. For example, the top ten predicted kinases of 
sorafenib focused on the tyrosine kinase (TK) group, which 
demonstrated the accuracy of FLMTS in the prediction of 
kinase inhibitors.

Fig. 2  The AUC and the AUPR of FLMTS with different restarting 
probabilities on the Tang and PKIS datasets
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3.4  Pathway Enrichment Analysis

In cancer therapy, tyrosine kinase inhibitors can accurately 
target receptor tyrosine kinase signaling pathways, which 
can inhibit cell signal transduction, thereby inhibiting the 
growth and proliferation of cancer cells and promoting 
apoptosis [47]. Thus, it is particularly important to accu-
rately target the signaling pathways in disease treatment. 

To further validate the practicability of FLMTS in treating 
disease, we carried out gene pathway enrichment analysis 
using the first 20 predicted genes (kinases) of sorafenib [43], 
which has been used in the treatment of unresectable hepa-
tocellular carcinoma (HCC), advanced renal cell carcinoma 
(RCC), and differentiated thyroid carcinoma (DTC) from 
the DailyMed database (https:// www. daily med. nlm. nih. 
gov/). The pathway enrichment results are shown in Fig. 4. 

(a) (b)

(c) (d)

Fig. 3  Performance of different models. a ROC curves of FLMTS 
and comparison models on the PKIS dataset. b The AUPR of FLMTS 
and the comparison models on the PKIS dataset. c ROC curves of 

FLMTS and comparison models on the Tang dataset. d The AUPR of 
FLMTS and the comparison models on the Tang dataset

https://www.dailymed.nlm.nih.gov/
https://www.dailymed.nlm.nih.gov/
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Genes (kinases) were enriched in 12 pathways, and most of 
them were enriched in the first six pathways, including PI3K-
Akt, focal adhesion, Rap1, Ras, calcium, and MAPK. This 
shows that sorafenib may target the 12 significant pathways 
and have a more significant effect on the first six pathways. 
In addition, we selected genes associated with diseases of 
HCC, RCC, and DTC with a threshold of Scoregda = 0.5 in 
the DisGeNET database (http:// www. disge net. org) and used 
these genes for pathway enrichment analysis. These genes 
were enriched in 96 pathways, suggesting that these path-
ways hold a critical relationship in the treatment of HCC, 
RCC, and DTC. The results are shown in the Supporting 
Materials. We found that 9 pathways could be found on 
both the 12 pathways of sorafenib and the 96 pathways that 
performed on the selected genes. Among the first 6 signifi-
cant pathways of 12 pathways, 5 pathways (PI3K-Akt, focal 
adhesion, Rap1, Ras, and MAPK) were found among the 96 
pathways. This shows that FLMTS could also accurately pre-
dict the signaling pathways in disease treatment and further 
explains the internal reason for the predicted these kinase 
inhibitors. In summary, the pathway enrichment analysis 
showed that the FLMTS model has excellent practicability 
and high accuracy as well as application value in the screen-
ing of potential kinase inhibitors.

4  Conclusion and Discussion

In this study, a new computational framework (FLMTS) was 
developed for predicting potential kinase inhibitors. This 
framework incorporated multisource information includ-
ing gold standard compound–kinase interaction network 

information, the similarity information of compounds and 
kinases, and the structural information of compounds and 
kinases. The FLMTS includes four steps: (1) we calcu-
lated the structure similarity of compounds and kinases and 
obtained the interaction information of compound–kinase 
from datasets; (2) the similarity of compounds and kinases 
and the interaction information of compound–kinase were 
applied to structure a heterogeneous network; (3) FLMTS 
uses the RWR algorithm to obtain the topology informa-
tion of nodes on the heterogeneous network; (4) the topol-
ogy information as features of compounds and kinases were 
input to the random forest classifier for predicting the inter-
action score of compound–-kinase.

In conclusion, we presented a novel framework, named 
FLMTS, to enhance performance. First, to fuse multisource 
knowledge as features, we used the RWR to combine the 
topology information and sequence characteristics of nodes 

Table 3  The experimental results of FLMTS with baselines on the 
two datasets

Bold values indicate the best results

Recall Precision F1-score BA

PKIS
 FLMTS 0.9187 0.3108 0.4643 0.9237
 FLMTS + 0.8469 0.2864 0.4279 0.8865
 IDDkin 0.8401 0.2841 0.4245 0.8830
 NMF 0.8011 0.2713 0.4052 0.8629
 RWR 0.7620 0.2578 0.3851 0.8426
 Katz 0.4249 0.1437 0.2148 0.6682

Tang
 FLMTS 0.7523 0.4639 0.5738 0.8476
 FLMTS + 0.7362 0.4540 0.5616 0.8390
 NMF 0.7361 0.4539 0.5615 0.8389
 IDDkin 0.7071 0.4360 0.5393 0.8235
 RWR 0.5489 0.3385 0.4187 0.7392
 Katz 0.3173 0.1957 0.2420 0.6158

Table 4  The first ten candidate kinases of the three selected com-
pounds predicted by FLMTS

Compounds Kinase Group Score Evidence

Sorafenib MUSK TK 0.318 25,965,825
KDR TK 0.304 23,279,183
PYK2 TK 0.229 23,153,798
CSK TK 0.227 –
JAK3 TK 0.201 22,368,270
FLT1 TK 0.201 23,279,183
DDR2 TK 0.168 23,279,183
PDGFRA TK 0.155 19,212,337
EphA3 TK 0.129 –
EphA4 TK 0.127 –

Vandetanib DDR2 TK 0.369 25,806,311
ErbB2 Tk 0.347 17,136,225
MSSK1 CMGC 0.287 –
P38a CMGC 0.198 –
EphB4 TK 0.097 28,332,573
CaMK1d CAMK 0.057 –
PDK1 AGC 0.042 17,136,225
AurC Other 0.041 –
TSSK2 CAMK 0.038 –
MAP2K1 STE 0.035 23,822,199

Sunitinib MSSK1 CMGC 0.102 –
DYRK2 CMGC 0.083 –
GSK3A CMGC 0.072 –
P38a CMGC 0.061 26,815,723
PYK2 TK 0.041 –
FLT4 TK 0.038 27,149,458
GCK STE 0.035 –
FLT1 TK 0.034 27,149,458
TSSK2 CAMK 0.030 –
KDR TK 0.030 27,149,458
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as the features. Second, to prevent overfitting based on lim-
ited a priori knowledge, RF was applied to predict the inter-
action of compounds and kinases. Compared with the state-
of-the-art methods, the FLMTS has better performance. 
FLMTS makes the most of the heterogeneous network 
information, the structural information of the compounds 
and the kinases, and two similarity network knowledge, but 
the conventional models for predicting kinase inhibitors (i.e., 
MTDNN [17], PEPECFP [14]) do not apply the structural 
information of kinases and the two similar network knowl-
edge. The models (i.e., NMF [31, 32], RWR [28, 29]) do 
not incorporate similarity network knowledge, and it is not 
surprising that their prediction performance is worse than 
that of FLMTS. Compared with some complex models (i.e., 
IDDkin [30]), the FLMTS could present better performance 
based on limited priori knowledge (e.g., 2414 positive sam-
ples in PKIS), since it may be less inclined to overfitting. 
In addition, compared with the variant model FLMTS + , 
FLMTS has less information but better performance. It 
may be that the interaction network is too sparse and the 
features of the interaction network contain too much noise, 
which reduces the performance of FLMTS + . In the end, 
case studies demonstrate that FLMTS is an effective method 
for improving the prediction of potential kinase inhibitors, 
and pathway enrichment analysis demonstrates that FLMTS 
could also accurately predict the signaling pathways in dis-
ease treatment and further explains the internal reason for 
the predicted result. In brief, diverse experiments demon-
strate that FLMTS achieves excellent performance and has 
practical value for kinase inhibitor prediction.

In our future work, we will consolidate more useful inter-
action information such as inhibitor-disease interactions and 
relevant feature knowledge such as RNA sequences from 

other databases and literature and not only obtain the topol-
ogy information in a heterogeneous network but also obtain 
semantic information. It may improve the model’s predic-
tion performance. Moreover, we will further study the bind-
ing mode of kinases and inhibitors and apply new methods 
to predict whether there is irreversible inhibition between 
potential kinase inhibitors and corresponding kinases. It is 
worth noting that irreversible kinase inhibitors offer many 
latent advantages over reversible kinase inhibitors [47]. 
Hence, it is worth studying whether the inhibitors are irre-
versible. As far as we know, there are some reversible inhibi-
tors in the datasets (e.g., infigratinib phosphate [48] in Tang 
and GSK180736A [49] in PKIS) and few irreversible inhibi-
tors in the datasets, but there are no divided into reversible or 
irreversible inhibitors in the Tang and PKIS datasets. Thus, 
we will conduct this research in the future.
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