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Abstract—single-cell RNA-sequencing (scRNA-seq) technology
can reveal cellular heterogeneity with high throughput and
resolution, facilitating the profiling of single-cell transcriptomes.
However, due to some experimental factors, a large number of
missing values are generated in scRNA-seq data, which are called
dropout events, and this phenomenon affects the downstream
analysis. Imputation is an effective denoising method, but existing
imputation methods still face a huge challenge: lack of inter-
pretability. In this study, we propose single-cell Self-Attention
Generative Adversarial Networks(scSAGAN), a semi-supervised
imputation method for scRNA-seq data. scSAGAN mainly uses
Semi-Supervised Learning (SSL) and Probabilistic Latent Se-
mantic Analysis (PLSA), which can not only learn the potential
characteristics of different types of cells but explain their imputa-
tion behavior. In clustering experiments, sScSAGAN exhibits better
clustering performance than all baselines on 7 datasets. Next, we
interpret the imputation behavior of scSAGAN on datasets such
as Alzheimer’s disease and find causative genes associated with
the corresponding datasets. sScSAGAN is currently an open-source
method, available at https://github.com/zehaoxiong123/scSAGAN.

Index Terms—single-cell RNA sequencing, cell type identifica-
tion, Generative adversarial network, Semi-supervised learning

I. INTRODUCTION

The human genome project is of great significance for
exploring the origin of human life [1, 2]. In recent years,
scRNA-seq data has been able to better characterize the
transcriptome profile at the single-cell resolution, which can
provide references for cancer treatment, biological genetics,
and the discovery of specific genes [3]. However, the sScRNA-
seq data produce more zero values than the true expression due
to the influence of experimental factors, which affect many
downstream analyses including cell clustering [4].

Imputation and dimensionality reduction are both effective
methods to eliminate dropout events in scRNA-seq data, and
previous researchers have proposed many methods to effec-
tively reduce the noise of scRNA-seq data. The imputation
method applied to scRNA-seq still faces two challenges.
(1)Interpretability: Although the existing scRNA-seq data im-
putation method can restore the expression level of cells very
well, it cannot explain the position and value of the imputation
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data. (2)Inference ability: Existing scRNA-seq data imputation
methods are unsupervised methods, and cannot infer labels for
unknown cells.

Therefore, in this paper, we propose a semi-supervised
GAN-based imputation method scSAGAN to help us eliminate
dropout events and restore cellular heterogeneity. ScCSAGAN is
based on the Self-Attention GAN (SAGAN)[5], a generative
model is used to generate reliable expression profiles of
scRNA-seq data. The main contributions of this paper are
summarized as follows:

1) We transform the SAGAN model into a semi-supervised
GAN [6] that can fit the class distribution of the data.

2) To enhance the interpretability of sScSAGAN, we intro-
duce PLSA [7], a generative model that can infer asso-
ciations between topics, vocabularies, and documents in
natural language processing.

3) We evaluate the scSAGAN on public datasets from mul-
tiple different platforms, and the interpretability of the
scSAGAN model on Alzheimer’s disease(AD) datasets.

II. METHOD
A. Datasets

The experimental data involved in the experiments of
clustering and annotating scRNA-seq data are all from [8].
These datasets consist of 7 scRNA-seq data expression profiles
from different platforms and sources. Next, we mainly use
Alzheimer’s disease dataset published on the GEO database
to verify the interpretability of scSAGAN. Details of these
datasets are recorded in (Table 1).

In data preprocessing, SCSAGAN processes the scRNA-
seq data X € RM*N in three steps, where M represents
the number of cells and N represents the number of genes.
First, scSAGAN select 2500 highly variable genes from all
sequenced genes, which are used for training and imputation.
Next, sScSAGAN normalizes the expression values of these
genes to the range (0, 1) by the scale factor. Finally, scSAGAN
converts the /normalized scRNA-seq data expression profile
X € RM*N into images for training, where N represents
the number of genes after preprocessed.
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Fig. 1.

Imputed expression

The overall structure of scSAGAN. scSAGAN distinguishes labeled and unlabeled data in the preprocessed scRNA-seq data and feeds them into the

model together for training. The discriminator can not only judge the true and false expression profiles of scRNA-seq data through training but also judge
the cell type of the input scRNA-seq data. The generator can generate cell-specific expression profiles to impute cell-specific sScRNA-seq data. The parameter
matrix extracted from the neural network can be used to explain the imputation behavior.

TABLE I
SUMMARY OF THE REAL SCRNA-SEQ DATASETS
Dataset Cell Gene | Class Platform
Adam 3660 | 23797 8 Drop-seq
Alzheimer 13215 | 10850 8 10x
Muraro 2122 19046 9 CEL-seq2
Qx_Bladder | 2500 | 23341 4 10x
Qx_Spleen 9552 | 23341 5 10x
QS_Lung 1676 | 23341 6 Smart-seq2
Romanov 2881 21143 7 Smart-seq2
Young 5685 | 33658 11 10x

B. Overall structure of scSAGAN

We use the Self-Attention GAN [9] as the main module
of scSAGAN. To better learn the characteristics of scRNA-
seq data, we change the unsupervised SAGAN to a semi-
supervised SAGAN, which changes the discriminator to a
semi-supervised classifier and trained with a small number of
labels. The overall architecture of scSAGAN is shown in Fig.
1.

1) Semi-Supervised Discriminator: In traditional GAN, the
discriminator is generally used to determine whether the data is
generated by the generator, but the discriminator of scSSAGAN
is used to determine which category the real cells belong to.
Thus, we use Prodei(y = K+1|x) to represent the probability
that the data generated by the generator is judged to be false,
instead of the 1 — D(z) of the standard GAN.

The scSAGAN hopes that the expression values of genes in
different categories of cells can replace the word frequency,
and automatically learn the probability distribution of different
topics in the process of training the discriminator network.
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The semi-supervised discriminator architecture of scSAGAN
is shown in Fig. 1. First, we choose to trar}sform the original
data input T € R™™ into a vector 7, € RY . Gene embedding
W, € RN ** and topic embedding W; € R**(K+1 are set
to learn the association between topics and genes, where ¢ is
the assumed number of topics. Second, we multiply x4, and
W, to get the topic representation z,, € R" of the cell and get
the self-attention representation z, € R! of input x € R"X"
through the self-attention layer and the convolutional layer.
Next, x,, and x, are added by hyperparameter o to get joint
representation x, of the cell. Finally, we multiply x, with
topic embedding W; to get a discriminant vector x, € REA1
with dimension K + 1, which is to learn the association
between topics and cell types. To support semi-supervised
learning of scSAGAN, the loss is divided into three parts,
supervised loss, unsupervised loss, and pseudo-sample loss.
After simplification, the specific loss function is as follows:

Liabte = ~E(z y)~ Pyra (2.9) 109 Pmode (y| 2,y < K +1)]
_eap(ly)
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where the Lj,. 1S to check whether the estimated labels are
correct for labeled samples in the training set. The Ly ,iqb1e
is to test whether the estimate is “’true” for unlabeled samples
in the training set. The L ¢4, is to evaluate whether the fake
samples generated by the generator are estimated to be “fake”.
The total loss is:

Lfake
3)

LD = Llable + g(Lunlable + Lfake) (4)

In the discriminator, we rely on the hyperparameter & to
control the ratio between supervised loss and unsupervised
loss, default £ = 0.3.

2) Generator: To generate scRNA-seq data expression
profiles consistent with specified categories, we design the
generator of sScSAGAN to be trained with specified one-hot
encoding, in a similar way to CGAN [10]. We specify that
the input to the generator is a simple concatenation of the
vector z € R! sampled from a Gaussian distribution and
the specified one-hot encoding zjge; € RX, resulting in
Zean € RET!. Next, 2.,y is put into the self-attention layer
and the ConvTranspose layer for deconvolution operation
to obtain the scRNA-seq data expression profile of pseudo-
cells x;, for imputation. Finally, the discriminator of sScSAGAN
needs to judge the category of z,, whether it is consistent
with the specified one-hot encoding z;4pe;. Therefore, the loss
function is defined as follows:

K
L = =Bz, y,)~Piata(@p.yp) {lyp - logZi:l(li)} ©)

where y, is the cell label predicted by the discriminator, and
the generator is trained under the guidance of the discrimina-
tor.

C. The imputation process of scSAGAN

The scSAGAN and scIGANs both use the trained generator
to generate the same type of scRNA-seq data expression
profile as pseudo-cell, and only impute the position where the
expression value is ”0”. In this process, the discriminator plays
the role of a “director”, which specifies the position and value
of the expression profile of scRNA-seq data. For labeled cells,
scSAGAN imputes scRNA-seq data using the same labeled
pseudo-cell expression profile. For unlabeled cells, scSAGAN
first predicts the label of the cell and then imputes it.

III. RESULTS
A. The performance of scSAGAN on downstream analysis

To evaluate the clustering performance of scSAGAN, we
apply it to 7 scRNA-seq datasets and compare it with 4 state-
of-the-art imputation methods. Through the verification of 7
datasets, we find that scSAGAN can achieve a better ARI
with an average value of 0.55 than all baselines (Fig. 2a, b).
Furthermore, we find that only the scSAGAN maintains the
original biological characteristics and shows the separation
between different cell clusters through UMAP visualization
(Fig. 2c¢).

180

The imputation method can effectively recover missing
values due to technical noise, which helps us understand
the expression values produced by imputation. we conduct
experiments using two gold-standard cell-annotated datasets
(Zeisel [11], Klein [12]) as the benchmarks. We randomly
remove 10%, 30%, and 50% of non-zero values from the gold
standard scRNA-seq data to simulate the missing phenomenon
caused by technical noise. The Median L1 distance and
cosine similarity are used by us to measure the ability of
the imputation method to restore gene expression. We find
that scSAGAN achieves competitive results on the Median L1
distance and outperforms all baseline methods on the Klein
dataset with an average value of 0.39. Therefore, scSAGAN
can restore missing expression values in scRNA-seq data and
can effectively facilitate cell clustering and visualization.

B. Predicting cell labels with scSAGAN

In the experiments, we remove 90%, 70%, and 50% of
the labels in the dataset, train scSAGAN through Semi-
Supervised Learning, and verify the annotation accuracy. To
verify the robustness of the sScSAGAN discriminator, we train
the discriminator multiple times by changing the random seed
when drawing training samples. sScCSAGAN can maintain high
quality and accuracy when extracting more than 30% of train-
ing samples, but scSSAGAN cannot maintain stability under
10% of training samples. The average prediction accuracy of
scSAGAN on all datasets is shown in (Fig. 3).

C. scSAGAN explains disease-causing gene imputation

In this section, we use the PLSA model to verify the
influence of important features on model training during
the training process of scSAGAN. We conduct clustering
experiments on real Alzheimer’s disease datasets. ScCSAGAN
imputes the AD dataset based on 8 different cell types. Since
Alzheimer’s disease affects gene expression in different types
of cells, it is an important factor that hinders cell clustering.
Among all cell types, gene expression in astrocytes, endothe-
lial, and microglia cells is most affected. Taking astrocytes
as an example, we select the highest enriched topic 46 from
the 50 topics, and select the 50 highest enriched genes from it.
Taking [13] as a reference, 12 of these genes are related to the
differential expression of Alzheimer’s disease, which proves
that Alzheimer’s disease is an important factor affecting cell
clustering. Through the MalavCard database, we find that the
remaining 17 genes are all associated with diseases such as
cancer and nervous system.

IV. DISCUSSION

To mitigate the impact of dropout events on downstream
analysis of scRNA-seq data, imputation is an efficient method.
However, due to the lack of inferability and interpretability,
existing imputation methods are difficult to infer real scRNA-
seq data. We propose scSAGAN, a Semi-Supervised Learning
interpretable scRNA-seq data imputation method, which uses
SAGAN and PLSA as the basic architecture to impute the
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scRNA-seq data dropout events. In this paper, we demon-
strate the potential of semi-supervised learning in the field
of scRNA-seq data imputation and provide interpretability for
imputation methods, and we hope that sScSAGAN can guide
future scRNA-seq data imputation interpretability studies.
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